金属锂负极与石榴石型固体电解质的界面改性研究毕业论文
2022-01-18 21:42:24
论文总字数:15574字
摘 要
随着社会和科技的发展,人们对可移动能源的需求越来越强烈,锂离子电池自问世以来,由于具有高容量、大功率、良好的循环性能以及使用寿命长等优势引起了科学家的关注,正负极材料的组成和电解质溶液的结构、组成直接决定着电池的性能。传统的液体电解质容易发生泄露和燃烧,存在很大的安全问题,因此我们选择了稳定性比较好的固体电解质,通过改善锂负极与固体电解质之间的界面性能进一步提高电池容量,增强锂电池的性能,这样才会让全固态锂离子电池得到充分的实际应用。
本文通过在熔融锂中添加α-MoO3调控锂的表面能和粘度,采用XRD、SEM等表征手段来研究相关物质组成和微观形貌等特性,并探究了它们作为锂离子电池负极界面材料时对于电化学性能的影响。进而证实了LLZTO和Li-Mo合金负极在长时间和高容量循环期间的优异稳定性。通过添加合金元素,熔融锂的表面能和粘度都得到了提高,富含锂的熔融合金对基材的润湿性大大提高,这种合金显著地降低了锂与石榴石固体电解质之间的界面电阻,进而使得固态锂离子电池成为开发具有高能量密度安全电池的有前途的选择。
关键词 :锂离子电池 固体电解质 负极材料 α-MoO3
ABSTRACT
With the development of society and science and technology, people's demand for mobile energy is becoming stronger and stronger.Since the advent of lithium-ion batteries, scientists have paid attention to the advantages of high capacity, high power, good cycle performance and long service life. The composition of anode and cathode materials and the structure and composition of electrolyte solution directly determine the performance of the battery.The traditional liquid electrolyte is easy to leak and burn, which has great safety problems. Therefore, we have chosen a solid electrolyte with better stability, and further improve the battery capacity by improving the interface performance between the lithium negative electrode and the solid electrolyte, and enhance the lithium battery. Performance, so that the all-solid-state lithium-ion battery is fully practical.
In this paper, the surface energy and viscosity of lithium were controlled by adding α-MoO3 to molten lithium. The characteristics of related substances and micromorphology were studied by XRD, SEM and other characterization methods, and they were explored as lithium ion batteries. The influence of them on the electrochemical properties when they are used as anode interface materials for lithium ion batteries is also investigated. Further, the excellent stability of the LLZTO and Li-Mo alloy negative electrodes during long-term and high-capacity cycles was confirmed. By adding alloying elements, the surface energy and viscosity of molten lithium are improved, and the wettability of the lithium-rich molten alloy to the substrate is greatly improved. This kind of the interface resistance between lithium and garnet solid electrolyte was significantly reduced by the alloy.Resistors, in turn, make solid-state lithium-ion batteries a promising option for developing safe batteries with high energy density.
KEYWORDS: Lithium Ion Battery;Solid electrolyte;Anode material;α-MoO3
目录
摘要 Ⅰ
ABSTRACT Ⅱ
第一章 绪论 1
1.1 引言 1
1.2 锂离子电池 2
1.2.1 锂离子电池概述 2
1.2.2 锂离子电池工作原理 2
1.2.3 锂离子电池的优点 3
1.3 固体电解质 4
1.3.1 固体电解质的研究意义 4
1.3.2 固体电解质种类 5
1.3.3 固体电解质Li6.4La3Zr1.4Ta0.6012(LLZTO) 6
1.3.4 固体电解质界面 6
1.4 氧化钼负极材料 8
1.4.1 氧化钼的性质与结构 8
1.4.2 氧化钼在锂离子电池中的应用 9
1.5本论文的目的、意义及主要研究内容 9
第二章 实验部分 11
2.1 试剂与仪器 11
2.2 LLZTO电解质的制备 12
2.3 α-MoO3纳米带制备 12
2.4 Li-Mo合金制备 12
2.5 纽扣对称电池组装 13
2.6分析与表征 13
2.6.1 X射线衍射法(XRD) 13
2.6.2 扫描电子显微镜(SEM) 13
第三章 结果与讨论 14
3.1 XRD分析 14
3.2 SEM分析 15
3.3 界面浸润性 16
3.4 电池性能测试 17
第四章 结论与展望 18
4.1 结论 18
4.2 展望 18
参考文献 19
致谢 20
- 绪论
1.1 引言
请支付后下载全文,论文总字数:15574字