质子交换膜燃料电池铂铁催化剂的设计与制备毕业论文
2022-01-28 21:42:17
论文总字数:29181字
摘 要
质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)是一种电化学装置,其通过燃料的氧化过程(在阳极处)和相应的氧气(在阴极处)的减少将化学能转化为电能。因为此化学装置能够在低于100 ℃的常温条件下运行,反应产物为清洁无污染的水,功率密度大等特点,PEMFC作为新能源广泛应用于移动电源和公共发电等领域,开发前景广阔。质子交换膜燃料电池主要由膜电极组件和金属极板两大部分组成,其中膜电极组中的催化剂一直是科学研究的热点。膜电极主要构成为:质子交换膜,催化剂涂层和气体扩散层。燃料电池的研发过程中,主要挑战是催化剂阴极的氧还原反应(Oxygen Reduction Reaction,ORR)缓慢速率的问题。而在所有被开发的催化剂中,Pt基催化剂仍然是最好的选择。但是由于催化剂的主要成分是Pt,这就使得催化剂的制备会成本和难度上升。所以,致力于开发Pt含量低的实用ORR合金催化剂是必要的。
本文采用了不同于普遍应用生产合金催化剂的浸渍高温还原法,而是一种利用氮源和有机引发剂制备的高耐用和高活性有序金属间面心立方Pt-Fe纳米粒子(NPs)的新型合成方法。该工艺能够在一定程度上降低催化剂课粒在焙烧过程中的团聚和晶体成长问题。在催化剂的制备过程中加入氮源和有机絮凝剂,通过扫描电镜和X射线衍射检测发现,催化剂的分散性和活性得以提高,成功地简化了Pt3Fe/N-C催化剂的制备过程。
关键词:质子交换膜燃料电池 阴极反应 催化剂 纳米颗粒 分散度
Study on Cathode Performance of Proton Exchange Membrane Fuel Cell Using PtFe Nanocatalyst with High Durability and Activity
Abstract
Proton exchange membrane fuel cell (PEMFC) is an electrochemical device that converts chemical energy into electrical energy through the reduction of the oxidation process of the fuel (at the anode) and the corresponding oxygen (at the cathode). Because this chemical device can operate at room temperature below 100 °C, the reaction product is clean, pollution-free water, and has large power density. As a new energy source, PEMFC is widely used in mobile power and public power generation, and has broad prospects for development. Proton exchange membrane fuel cells are mainly composed of membrane electrode assemblies and metal plates. Catalysts in the membrane electrode assemblies have always been a hot topic of scientific research. The membrane electrode is mainly composed of a proton exchange membrane, a catalyst coating and a gas diffusion layer. In the development of fuel cells, the main challenge is the slow rate of Oxygen Reduction Reaction (ORR) at the cathode of the catalyst. Of all the catalysts developed, Pt-based catalysts are still the best choice. However, since the main component of the catalyst is Pt, the cost and difficulty of preparation of the catalyst increase. Therefore, it is necessary to develop a practical ORR alloy catalyst with a low Pt content.
Instead of the commonly used impregnation high-temperature reduction method used to
produce alloy catalysts, this paper presents a highly durable and highly reactive ordered intermetallic cubic Pt-Fe nanoparticle (NPs) prepared using nitrogen source and an organic initiator. New synthesis method. The process can reduce the agglomeration and crystal growth problems of the catalyst particles in the roasting process to some extent. Nitrogen source and organic flocculant were added during the preparation of the catalyst. It was found through scanning electron microscopy and X-ray diffraction that the dispersibility and activity of the catalyst was improved, and the preparation process of Pt3Fe/N-C catalyst was successfully simplified.
Key Words: Proton exchange membrane fuel cell; Cathodic reaction; Catalyst; Nanoparticles
Dispersion
目录
摘 要 I
Abstract II
第一章 绪论 1
1.1 质子交换膜燃料电池 2
1.1.1 冷启动时间短 2
1.1.2 低操作温度 3
1.1.3 高能量转化效率 3
1.1.4 固态电解质膜 3
1.2 质子交换膜燃料电池的运行机理 4
1.3 质子交换膜燃料电池的催化剂 5
1.3.1 Pt催化剂 5
1.3.2 铂基合金催化剂 6
1.3.3 非Pt基催化剂 7
1.4 酸性体系氧还原反应(ORR) 8
1.5 本课题研究或解决的问题 8
第二章 实验部分 10
2.1 实验试剂和仪器 10
2.2 粉体的制备 12
2.2.1 炭载体的处理 12
2.2.2 Pt3Fe/N-C纳米催化剂粉体制备 12
2.2.3 PtFe/N-C纳米催化剂粉体制备 13
2.3 单电池的制备 13
2.3.1 Nafion膜催化剂层制备与喷涂 13
2.3.1.1 Nafion膜的预处理 13
2.3.1.2 催化剂浆料(CCM)喷涂 13
2.3.2 单电池的组装 14
2.4 表征方法 14
2.4.1 X-射线衍射(XRD) 14
2.4.2 扫描电子显微镜(SEM) 14
2.5 电池性能测试 15
2.5.1 单电池性能 15
第三章 结果与讨论 15
3.1 XRD表征 15
3.2 扫描电子显微镜(SEM)表征 16
3.3 全电池性能 18
第四章 结论与展望 20
4.1 结论 20
4.2 展望 20
参考文献 21
致 谢 24
第一章 绪论
当今,在化石能源的日益枯竭,且当今社会又对能源的需求越来越大的情况下,对于新能源的合理开发、储存及转化的研究得到了广泛的重视,而电力能源作为最常见、最重要的一种能源类型,已经渗透到社会发展的方方面面。在国家节能减排、绿色环保的政策下,从便携式电子产品,商业和工业建筑,到住宅用电,公用事业规模应用,都需要在开发替代性,可再生和可持续能源方面努力,从而缓解亟需解决的能源短缺的问题。
燃料电池作为提供电能的装置之一,其目标是取代汽油动力并提供环保可持续产品,从而减少传统能源燃料对自然环境潜在的不利影响。具体而言,当下国家已经花费了大量精力来设计不需要太多化石燃料消耗的清洁能源替代品,从而减轻传统能源可能有害的二氧化碳排放和温室气体的产生。因此,采用可持续发展战略,一个关键目标是创造高效,稳健和稳定的燃料电池架构,降低总体成本,从而提高其总体竞争力并最终被大众市场所接受。
请支付后下载全文,论文总字数:29181字