登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 化学化工与生命科学类 > 化学工程与工艺 > 正文

卤素掺杂钴基阴极材料用于中低温固体氧化物燃料电池阴极的研究毕业论文

 2022-01-30 17:09:47  

论文总字数:23390字

摘 要

固体氧化物燃料电池(SOFC)是一种高效的能源转换装置,具有能量转化效率高、燃料适用性强、余热利用率高、环境友好等优点[1]。而SOFC高温操作的缺点就是成本过高,商业化应用困难。将SOFC的操作温度降低至500-700 °C范围内,可以显著提高热循环稳定性,拓宽材料选择性,降低电池制造和运行成本。然而随着操作温度的降低,阴极上氧还原反应(ORR)极化电阻迅速增大,电池的输出功率降低。因此,阴极材料也成为了制约SOFC发展的一个很重要的因素。为了提高阴极材料的氧还原活性,需要深入研究并优化传统钴基材料,开发在中低温时具有高的电化学活性和操作稳定性的新型钴基材料。

由于卤素与氧有更高的结合键能,在传统钙钛矿材料中掺杂卤素可以有效的降低金属与氧的结合键能,利于在高温时氧从体相中脱出,产生更多的氧空穴,提高材料的氧还原活性。本论文通过在低温Co基阴极材料BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY)中氧位掺杂不同含量的F,得到BaCo0.4Fe0.4Zr0.1Y0.1O3-0.5x-δFx (x=0,0.05,0.1),即BaCo0.4Fe0.4Zr0.1Y0.1O2.975-δF0.05 (BCFZYF0.05)、BaCo0.4Fe0.4Zr0.1Y0.1O2.95-δF0.1 (BCFZYF0.1),分别研究电极材料的结构、相反应、电化学阻抗、单电池性能等性质,得到x=0.05时,其电化学性能最佳,在600 °C时的阻抗值仅为0.0371 Ω cm2,低于没有F掺杂的0.0645 Ω cm2。同时,BCFZYF0.05表现出优异的电化学稳定性,其在600 °C,80 h内阻抗值保持稳定。因此,F掺杂传统高性能钴基阴极可以进一步提高ORR活性,推进SOFC商业化的进程。

关键词: 固体氧化物燃料电池 低温 阴极 BaCo0.4Fe0.4Zr0.1Y0.1O3-δ 氟掺杂

Study on Cathode Materials of Halogen-doped Cobalt-Based Cathodes for Intermediate and Low Temperature Solid Oxide Fuel Cells

Abstract

Solid oxide fuel cell (SOFC) is an efficient energy conversion device, which has the advantages of high energy conversion efficiency, strong fuel applicability, high utilization of waste heat and environmental friendliness. The disadvantages of SOFC's high temperature operation make it costly and difficult to commercialize. Reducing the operating temperature of the SOFC to a temperature in the range of 500-700 °C can significantly increase thermal cycle stability, broaden material selectivity, reduce cell manufacturing and operating costs. However, as the operating temperature decreases, the polarization resistance of the oxygen reduction reaction (ORR) at the cathode increases rapidly and the output power of the cell decreases. Therefore, cathode materials have also become a very important factor restricting the development of SOFC. In order to improve the oxygen reduction activity of the cathode material, it is necessary to further study and optimize the conventional cobalt-based material and develop a novel cobalt-based material having high electrochemical activity and stable operation at a low temperature.

Due to the higher bonding energy between halogen and oxygen, the doping of halogen in traditional perovskite materials can effectively reduce the binding energy of metal and oxygen, which facilitates the release of oxygen from the bulk phase at higher temperatures, resulting in more oxygen holes increase the oxygen reduction activity of the material. In this dissertation, by doping different contents of F at oxygen sites in low temperature Co-based cathode material BaCo0.4Fe0.4Zr0.1Y0.1O3-0.5x-δFx (x=0, 0.0, 0.1), namely BaCo0.4Fe0.4Zr0.1Y0.1O2.975-δF0.05 (BCFZYF0.05)、BaCo0.4Fe0.4Zr0.1Y0.1O2.95-δF0.1 (BCFZYF0.1),The properties of the electrode materials such as structure, phase reaction, electrochemical impedance, and single cell performance are studied. When x=0.05, the electrochemical performance is the best. The resistance value at 600 °C is only 0.0371 Ω cm2, which is lower than the sample without F-doped 0.0645 Ω cm2. At the same time, BCFZYF0.05 shows excellent electrochemical stability, and its impedance value remained stable at 600 °C for 80 h. Therefore, F-doped traditional high-performance cobalt-based cathode can further improve the ORR activity and can promote the commercialization of SOFC.

Keywords: Solid oxide fuel cell low temperature cathode BaCo0.4Fe0.4Zr0.1Y0.1O3-δ fluorine doping

目录

摘要 I

Abstract II

目录 IV

第一章 绪论 1

1.1 前言 1

1.2 SOFC 2

1.2.1 SOFC的特点 2

1.2.2 SOFC的工作原理 3

1.2.3 SOFC的结构组成 3

1.3 钙钛矿阴极 5

1.4 K2NiF4型阴极材料 6

1.5 其他阴极材料 6

1.6本论文的研究目的和工作内容 6

1.6.1 本论文的研究目的 6

1.6.2 本论文的工作内容 7

第二章 实验部分 8

2.1实验试剂和仪器 8

2.2阴极粉体及电解质的制备 9

2.2.1阴极粉体的制备 9

2.2.2溶胶-凝胶法制备电解质 9

2.2.3阴极浆料的制备 10

2.3电池的制备 10

2.3.1对称电池的制备 10

2.3.2 单电池的制备 11

2.3.3 对称电池及单电池的组装 11

2.4研究和表征方法 11

2.4.1 X射线衍射(XRD) 11

2.4.2环境扫描显微镜图(FE-SEM) 12

2.5电化学性能测试 12

2.5.1电化学阻抗谱(EIS) 12

2.5.2单电池性能 12

2.5.3 对称电池稳定性测试 13

第三章 结果与讨论 14

3.1 XRD表征 14

3.2 FESEM表征 16

3.3 EIS 电化学阻抗谱 18

3.4 对称电池稳定性测试 21

3.5单电池性能测试 22

第四章 结论与展望 24

4.1 结论 24

4.2 展望 25

参考文献 26

致谢 29

绪论

前言

20世纪50年代,石油危机的爆发让全世界关注到一个不容忽视的问题:能源短缺。在担心能源不足的同时,还有一个问题也不容忽视,人类每天大量的消耗这些能源,同时也造成了大量的污染,如排放的CO2、SO2、CO等气体造成温室效应、酸雨等危害地球的生态环境[1]。因此,为了解决全球能源不足的问题,开发利用可再生能源,已是刻不容缓的事情。

我们所说的新能源,一般是可再生并且污染很小的能源,包括有生物质能、风能、太阳能、水能等,此外还有氢能、沼气、CH3OH、C2H5OH等[2]。其中,氢能由于更加清洁、更加安全,所以受到了很多人的关注。因此,以氢能为主要能源的燃料电池技术也日益受到全世界科研人员的关注和重视,燃料电池的研究和应用正以极快的速度在世界范围内蓬勃发展[3]

请支付后下载全文,论文总字数:23390字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图