三元铜基硫化物的液相合成及其在超级电容器方面的应用任务书
2020-04-24 11:19:45
1. 毕业设计(论文)的内容和要求
活中的应用。
cu4sns4(cts)纳米材料作为超级电容器的电极材料具有更高的导电性和良好的电化学活性以及较高的氧化还原性,cu4sns4(cts)纳米材料和氧化石墨烯物理混合后可以进一步提高电导率,使其有希望成为新一代储能器件的电极材料。
本课题主要以乙酰丙酮铜、五水四氯化锡、正十二硫醇为原料,以热分解法制备cu4sns4(cts)纳米材料并对所得材料进行基团交换。
2. 参考文献
[1] S. Ratha, A.K. Samantara, K.K. Singha, A.S. Gangan, B. Chakraborty, B.K. Jena, C.S. Rout, Urea-assisted room temperature stabilized metastable b-NiMoO4: experimental and theoretical insights into its unique bifunctional activity toward oxygen evolution and supercapacitor, ACS Appl. Mater. Interfaces 9 (2017) 9640-9653. [2] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recentadvancement of nanostructured carbon for energy applications, Chem. Rev. 115 (11) (2015) 5159-5223. [3] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (21) (2016) 5925e5950. [4] C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11 (2011) 255-270. [5] S. Tajik, D.P. Dubal, P.G. Romero, A. Yadegari, A. Rashidi, B. Nasernejad, I.A.M. Asiri, Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: facile synthetic strategy, Int. J. Hydrogen Energy 42 (2017) 12384-12395. [6] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268-285. [7] B. Jain, K. Krishnamoorthy, Large anion incorporation to improve the performance of large, paper based conducting polymer supercapacitors, Mater. Today Energy 5 (2017) 112-117. [8] Y. Mateyshina, A. Ulihin, A. Samarov, C. Barnakov, N. Uvarov, Nanoporous carbon-based electrode materials for supercapacitors, Solid State Ionics 251 (2013) 59-61. [9] A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, S.M. Pawar, J.L. Gunjakar, A.I. Inamdar, H. Kim, H. Im, One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance, J. Alloys Compd. 724 (2017) 744-751. [10] A.C. Lokhande, A. Shelke, P.T. Babar, J. Kim, D.J. Lee, I.C. Kim, C.D. Lokhande, J.H. Kim, Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles, RSC Adv. 7 (2017) 33737-33744. [11] Fu, Cen Feng , X. Wu , and J. Yang . "Material Design for Photocatalytic Water Splitting from a Theoretical Perspective." Advanced Materials (2018).
3. 毕业设计(论文)进程安排
1-3周(2.25-3.17):阅读文献和熟悉实验室环境,进行实验室安全培训 4-8周(3.18-4.21):制备CTS纳米材料并进行基团交换,学习纺丝并制备电纤维 9周(4.22-4.28):对基团交换后的材料进行电学性能等表征,制作电容器 10-12周(4.29-5.19):对制得的电纤维组装的电容器对其电容量进行表征 13-15周(5.20-6.9):撰写毕业论文,进行答辩。