石墨烯-硫化物复合材料的制备以及光电化学性质研究任务书
2020-04-24 11:19:51
1. 毕业设计(论文)的内容和要求
石墨烯是一种由碳原子以spsup2;杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景。
cu4sns4(cts)纳米材料是具有良好光电化学性质的二维片状纳米材料,cu4sns4(cts)纳米材料和氧化石墨烯原位复合后可以进一步提高光电性能。
本课题主要以乙酰丙酮铜、五水四氯化锡、正十二硫醇为原料,以热分解法制备cu4sns4(cts)纳米材料并对所得材料进行基团交换。
2. 参考文献
[1] S. Ratha, A.K. Samantara, K.K. Singha, A.S. Gangan, B. Chakraborty, B.K. Jena, C.S. Rout, Urea-assisted room temperature stabilized metastable b-NiMoO4: experimental and theoretical insights into its unique bifunctional activity toward oxygen evolution and supercapacitor, ACS Appl. Mater. Interfaces 9 (2017) 9640-9653. [2] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recentadvancement of nanostructured carbon for energy applications, Chem. Rev. 115 (11) (2015) 5159-5223. [3] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (21) (2016) 5925-5950. [4] C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11 (2011) 255-270. [5] S. Tajik, D.P. Dubal, P.G. Romero, A. Yadegari, A. Rashidi, B. Nasernejad, I.A.M. Asiri, Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: facile synthetic strategy, Int. J. Hydrogen Energy 42 (2017) 12384-12395. [6] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268-285. [7] B. Jain, K. Krishnamoorthy, Large anion incorporation to improve the performance of large, paper based conducting polymer supercapacitors, Mater. Today Energy 5 (2017) 112-117. [8] Y. Mateyshina, A. Ulihin, A. Samarov, C. Barnakov, N. Uvarov, Nanoporous carbon-based electrode materials for supercapacitors, Solid State Ionics 251 (2013) 59-61. [9] A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, S.M. Pawar, J.L. Gunjakar, A.I. Inamdar, H. Kim, H. Im, One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance, J. Alloys Compd. 724 (2017) 744-751. [10] A.C. Lokhande, A. Shelke, P.T. Babar, J. Kim, D.J. Lee, I.C. Kim, C.D. Lokhande, J.H. Kim, Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles, RSC Adv. 7 (2017) 33737-33744. [11] Fu, Cen Feng , X. Wu , and J. Yang . "Material Design for Photocatalytic Water Splitting from a Theoretical Perspective." Advanced Materials (2018).
3. 毕业设计(论文)进程安排
3.4-3.8培训实验室安全管理制度,重复实验,熟悉基本的操作流程 3.11-3.15 熟悉基本的表征手段(xrd、sem) 3.18-3.24 培训GC、UV-ris、光催化产氢装置、EIS 3.25-3.29 测试并计算本征材料的CORR的参数,如VB,CB,Eg等 4.1-4.4 测试本征材料的光催化CORR性能 (4.5-4.7清明假期) 4.8-4.12 测试不同助催化剂负载量对于光催化产能性能的影响 4.15-4.19 探索不同量GO粉体与CTS的原位复合,寻找最佳反应条件 4.22-4.26 测试复合石墨烯对于 CORR性能的提升 4.29-4.30 整理数据,作图