金属锂负极与石榴石型固体电解质的界面改性研究任务书
2020-04-26 12:48:31
1. 毕业设计(论文)的内容和要求
本课题要求在查阅文献的基础上,了解金属锂负极与石榴石型电解质的界面改性
2. 参考文献
[1] GUO H-L, SUN H, JIANG Z-L, et al. A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery[J]. Journal Of Materials Science, 2019, 54(6): 4874-83. [2] TAO C, GAO M-H, YIN B-H, et al. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Electrochimica Acta, 2017, 257: 31-9. [3] CHEN R-J, ZHANG Y-B, LIU T, et al. Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach[J]. Acs Applied Materials Interfaces, 2017, 9(11): 9654-61. [4] HE K-Q, ZHA J-W, DU P, et al. Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries[J]. Dalton Transactions, 2019, 48(10): 3263-9. [5] CHAN X H, KHANMIRZAEI M H, OMAR F S, et al. Enhanced efficiency in dye-sensitized solar cell based on zinc oxide-modified poly(ethylene oxide) gel electrolyte[J]. Ionics, 2018, 24(4): 1221-6. [6] GAO M, WANG C, ZHU L, et al. Composite polymer electrolytes based on electrospun thermoplastic polyurethane membrane and polyethylene oxide for all-solid-state lithium batteries[J]. Polymer International, 2019, 68(3): 473-80. [7] DUMAISNIL K, CARRU J C, FASQUELLE D, et al. Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3-delta cathode with a dense interfacial layer at the electrode-electrolyte interface[J]. Ionics, 2017, 23(8): 2125-32. [8] CHENG S H-S, HE K-Q, LIU Y, et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochimica Acta, 2017, 253: 430-8. [9] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-54. [10] WU J F, CHEN E Y, YU Y, et al. Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity[J]. Acs Applied Materials Interfaces, 2017, 9(2): 1542-52. [11] YANG T, ZHENG J, CHENG Q, et al. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology[J]. Acs Applied Materials Interfaces, 2017, 9(26): 21773-80. [12] ZHANG B, XIAO C, XIE S, et al. Iron-Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting[J]. Chemistry Of Materials, 2016, 28(19): 6934-41. [13] YAP Y L, YOU A H, TEO L L, et al. Inorganic Filler Sizes Effect on Ionic Conductivity in Polyethylene Oxide (PEO) Composite Polymer Electrolyte[J]. Int J Electrochem Sci, 2013, 8(2): 2154-63. [14] LIU Y, LEE J Y, HONG L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes[J]. J Power Sources, 2004, 129(2): 303-11. [15] KIM J W, JI K S, LEE J P, et al. Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2[J]. J Power Sources, 2003, 119: 415-21. [16] CAPIGLIA C, MUSTARELLI P, QUARTARONE E, et al. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes[J]. Solid State Ionics, 1999, 118(1-2): 73-9. [17] ZHANG J, HAN H, WU S, et al. Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells[J]. Solid State Ionics, 2007, 178(29-30): 1595-601.
3. 毕业设计(论文)进程安排
第1-2周 阅读相关参考文献,了解课题的背景知识。
第3-7周 制备粉体,并进行xrd表征,测定其结构。
第8-13周 制备li-mo合金,电池性能的测定。