1万吨/年合成气制异丁醇工艺设计任务书
2020-04-26 12:49:17
1. 毕业设计(论文)的内容和要求
1. 查阅、整理文献资料,加深对自己课题的理解,并撰写开题报告。
2. 要求学生对分离工程、无机与分析化学、仪器分析等学科复习,从而对以后甲醇合成过程模拟打下基础。
3. 主要研究通过使用aspen plus化工模拟软件,对合成气制甲醇的生产过程进行动态模拟。
2. 参考文献
[1]. 卜红卫, 合成气生产甲醇影响因素的分析探讨. 山东化工, 2017. 46(16): 第112,115页. [2]. 夏春涛, 甲醇合成工艺过程与操作控制优化的分析. 山东工业技术, 2019(07): 第53页. [3]. Yu, S., et al., Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. Journal of Energy Chemistry, 2013. 22(05): p. 769-777. [4]. Abd, E.A.S. and A.E. Mohamed, Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether. 燃料化学学报, 2018. 46(01): p. 67-74. [5]. Li, J., et al., Extractive Distillation of Methyl Acetate-Methanol Azeotrope Using [DMIM]DMP as Solvent. China Petroleum Processing Petrochemical Technology, 2018. 20(04): p. 109-116. [6]. Liang, L., et al., Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for methanol oxidation. Journal of Energy Chemistry, 2019. 28(01): p. 118-122. [7]. Santos, M.C.L., et al., Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process. 燃料化学学报, 2018. 46(12): p. 1462-1471. [8]. Shuxun, T., et al., Preparation of modified Ce-SAPO-34 catalysts and their catalytic performances of methanol to olefins. Journal of Energy Chemistry, 2013. 22(04): p. 605-609. [9]. Liyuan, G., et al., Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry, 2018. 27(06): p. 1618-1628. [10]. Xin, L.T., et al., Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. Journal of Energy Chemistry, 2017. 26(06): p. 1067-1076. [11]. Yingjun, S., et al., Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Science Bulletin, 2019. 64(01): p. 54-62. [12]. Ren, X., Study on Treatment Technology of Methanol in the Low-concentration Methanol-containing Wastewater of a Gas Field. Meteorological and Environmental Research, 2018. 9(06): p. 49-52 61. [13]. Xingpeng, D., G. Jiaoqi and J.Z. Yongjin, Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters, 2018. 29(05): p. 681-686. [14]. Junjie, L., et al., Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene. Journal of Energy Chemistry, 2018. 27(04): p. 1225-1230. [15]. Yunfeng, B., et al., Highly efficient Cu/anatase TiO_2 {001}-nanosheets catalysts for methanol synthesis from CO_2. Journal of Energy Chemistry, 2018. 27(02): p. 381-388. [16]. Qingtao, W., et al., Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol. Chinese Journal of Chemical Engineering, 2017. 25(12): p. 1777-1783. [17]. Peyman, N., et al., Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion. Journal of Energy Chemistry, 2018. 27(02): p. 582-590. [18]. Haijuan, Z., et al., Structural properties and catalytic performance of the La-Cu-Zn mixed oxides for CO_2 hydrogenation to methanol. Journal of Rare Earths, 2018. 36(03): p. 273-280. [19]. Li, Y., et al., Study on Catalytic Alkylation of Benzene with Methanol over ZSM-22 and ZSM-35. China Petroleum Processing Petrochemical Technology, 2017. 19(04): p. 38-46. [20]. Wang, L., et al., Synthesis of Core-Shell HZSM-5@SBA-15 Composite and Its Performance in the Conversion of Methanol to Aromatics. China Petroleum Processing Petrochemical Technology, 2018. 20(01): p. 16-24. [21]. Jinglin, W., W. Haifeng and H. P., Theoretical insight into methanol steam reforming on indium oxide with different coordination environments. Science China(Chemistry), 2018. 61(03): p. 336-343. [22]. Wang, L., et al., ZSM-5/MAPO Composite Catalyst for Converting Methanol to Olefins in a Two-Stage Unit with a Dimethyl Ether Pre-Reactor. China Petroleum Processing Petrochemical Technology, 2018. 20(01): p. 8-15.
3. 毕业设计(论文)进程安排
2019.2.26-2019.3.20 查阅课题相关文献资料,确定实验思路,完成外文文献翻译和开题报告。
2019.3.21-2019.4.15 利用课题组已有研究基础,确定温度压力范围,aspen plus基本入门。
2019.4.16-2019.5.25 控制变量法调试温度压力条件,得到相关数值。