基于氮掺杂碳点的Cu2 和抗坏血酸传感器的构建和应用任务书
2020-06-29 20:40:47
1. 毕业设计(论文)的内容和要求
碳点作为一种新型的荧光纳米材料,具有较强的化学惰性和良好的光致发光特性。
与传统的有机染料和量子点相比,碳点具有更加优异的光学稳定性、抗光漂白性、更低的毒性以及更好的生物相容性。
基于荧光强度的转变,碳点已经被广泛地应用于食品、化学、医药等领域。
2. 参考文献
1. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356#8211;358. 2. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960#8211;9963. 3. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015#8211;4039. 4. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235#8211;242. 5. Zhang M, Bai LL, Shang WH, Xie WJ, Ma H, Fu YY, Fang DC, Sun H, Fan LZ, Han M, Liu CM, Yang SH (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461#8211;7467. 6. Chakraborti H, Sinha S, Ghosh S, Pal SK (2013) Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2 in 100 % aqueous solution. Mater Lett 97:78#8211;80. 7. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogendoped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens Bioelectron 58:219#8211;225. 8. Wang FX, Gu ZY, Lei W, Wang WJ, Xia XF, Hao QL (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens Actuators B 190:516#8211;522. 9. He YZ, Wang XX, Sun J, Jiao SF, Chen HQ, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized grapheme quantum dots based sensing system. Anal Chim Acta 810:71#8211;78. 10. Ran X, Sun HJ, Pu F, Ren JS, Qu XG (2013) Ag Nanoparticledecorated graphene quantum dots for label-free, rapid and sensitive detection of Ag and biothiols. Chem Commun 49:1079#8211;1081. 11. Huang DW, Niu CG, Wang XY, Lv XX, Zeng GM (2013) Turn On fluorescent sensor for Hg2 based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85:1164#8211;1170. 12. Liu ZQ, Liu SP, Wang XD, Li PP, He YQ (2013) A novel quantum dots-based OFF#8211;ON fluorescent biosensor for highly selective and sensitive detection of double-strand DNA. Sens Actuators B 176: 1147#8211;1153. 13. Bai JM, Zhang L, Liang RP, Qiu JD (2013) Graphene quantum dots combined with europium ions as novel photoluminescent probes for phosphate sensing. Chem Eur J 19:3822#8211;3826. 14. Liu JJ, Zhang XL, Cong ZX, Chen ZT, Yang HH, Chen GN (2013) Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5:1810#8211;1815. 15. Li YH, Zhang L, Huang J, Liang RP, Qiu JD (2013) Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49:5180#8211;5182. 16. Wu ZZ, Li WY, Chen J, Yu C (2014) A graphene quantum dotbased method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538#8211;543. 17. Barrera-D#237;az CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223#8211;224:1#8211;12. 18. Li DY, Li J, Jia XF, Xia Y, Zhang XW, Wang EK (2013) A novel Au#8211;Ag#8211;Pt three-electrode microchip sensing platform for chromium(VI) determination. Anal Chim Acta 804:98#8211;103. 1730 S. Huang et al.19. Miscoria SA, Jacq C, Maeder T, Mart#237;n Negri R (2014) Screenprinted electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sens Actuators B 195:294#8211;302. 20. Tan HL, Wu J, Chen Y (2014) Terbium(III) based coordination polymer microparticles as a luminescent probe for ascorbic acid. Microchim Acta 181:1431#8211;1437.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2017.12.20-2018.1.12 查阅资料,完成开题报告和任务书 2018.2.26-2018.3.4 确定方案,学习实验过程和操作 2018.3.5-2018.5.1 独立实验,制备CDs并对其表征分析 2018.5.2-2018.5.13 完成CDs对Cu2 和抗坏血酸的检测试验 2018.5.14-2018.6.1 数据整理,书写论文,制作PPT 2018.6.1-2018.6.5 修改论文并定稿