登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 轻化工程 > 正文

高浓前驱体下制备纳米粒子的机理研究任务书

 2022-01-16 19:20:05  

全文总字数:7611字

1. 毕业设计(论文)的内容、要求、设计方案、规划等

研究内容: 1. 氢氧化物类型对纳米氧化锌粒子大小和形貌的影响。

2. zn2 浓度对纳米氧化锌粒子大小和形貌的影响; 3. oh-/ zn2 的摩尔比对纳米氧化锌粒子大小和形貌的影响; 4. 水/甘油比例对纳米氧化锌粒子大小和形貌的影响; 5. 种子/ zn2 的摩尔比对纳米氧化锌粒子大小和形貌的影响;1. 掌握正确的文献搜索方法,在指导老师给的原始参考文献的基础上进一步补充,要求了解课题的背景、目的和意义,并对文献进行归纳总结,全面了解该课题的国内外研究现状,及其应用。

2. 扎实的化学基础、正确的研究方法和娴熟的实验技能。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献(不低于12篇)

1. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nano-wire nanolasers. Science 292: 1897-1899.2. Law M, Greene LE, Johnson JC, Saykally R, Yang P D (2005) Nanowire dye-sensitized solar cells. Nat Mater 4: 455-459.3. Umar A, Kim SH, Lee H, Lee N, Hahn YB (2008) Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. J Phys D: Appl Phys 41(6): 065412.4. Dorfman A, Kumar N, Hahm JI (2006) Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir 22(11): 4890-4895.5. Chennakesavulu K, Reddy MM, Reddy GR, Rabel AM, Brijitta J, Vinita V, Sasipraba T, Sreeramulu J (2015) Synthesis, characterization and photo catalytic studies of the composites by tantalum oxide and zinc oxide nanorods. J Mol Struct 1091: 49-56.6. Mirhosseini M, Firouzabadi FB (2013) Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 66(2):291-295.7. Dorfman A, Kumar N, Hahm JI (2006) Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir 22(11): 4890-4895.8. Gomez JL, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48(2): 612-624.9. Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20: 1275-1292.10. Lizundia E, Urruchia A, Vilasa JL, Leon LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136: 250-258.11. Park WI, Lee CH, Chae JH, Lee DH, Yi GC (2009) Ultrafine ZnO nanowire electronic device arrays fabricated by selective metalorganic chemical vapor deposition. Small 5:181-184.12. Oh H, Krantz J, Litzov I, Stubhan T, Pinna L, Brabec CJ (2011) Comparison of various solgel derived metal oxide layers for inverted organic solar cells. Sol Energy Mater Sol Cells 95:2194-2199.13. Dejene FB, Ali AG, Swart HC, Botha RJ, Roro K, Coetsee L, Biggs MM (2011) Optical properties of ZnO nanoparticles synthesized by varying the sodium hydroxide to zinc acetate molar ratios using the sol-gel process. Cent Eur J Phys 9:1321-1326.14. Feng JJ, Liao QC, Wang AJ, et al. (2011) Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications. CrystEngComm 13: 4202-4210.15. Raghvendra SY, Avinash CP (2008) Needle-like ZnO nanostructure synthesized by organic-free hydrothermal process. Physica E 40: 660-663. 16. Li H, Jiao S, Bai S, Li H, Gao S, Wang J, Yu Q, Guo F, Zhao L (2014) Precursor-controlled synthesis of different ZnO nanostructures by the hydrothermal method. Phys Status Solidi A 211: 595-600.17. Amarilio-Burshtein I, Tamir S, Lifshitz Y (2010) Growth modes of ZnO nanostructures from laser ablation. Appl Phys Lett 96: 103104-103106.18. Li X, He G, Xiao G, Liu H, Wang M (2009) Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci 333: 465-473.19. Sarkar D, Tikku S, Thapar V, Srinivasa RS, Khilar KC (2011) Formation of zinc oxide nanoparticles of different shapes in water-in-oil microemulsion. Colloids Surf A 381:123-129.20. Lee S, Jeong S, Kim D, Hwang S, Jeon M, Moon J (2008) ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattice Microst 43: 330-339.21. Kolodziejczak-Radzimska A, Jesionowski T (2013) Zinc oxide-from synthesis to application: a review. Materials 7(4):2833-2881. 22. Peng Y, Xu AW, Deng B, et al. (2006) Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks. Journal of Physical Chemistry B110: 2988-2993. 23. Lanje AS, Sharma SJ, Ningthoujam RS, Ahn JS, Pode RB (2013) Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol 24(1):331-335. 24. Li P, Wei Y, Liu H, Wang XK (2005) Growth of well-defined ZnO microparticles with additives from aqueous solution. J Solid State Chem 178(3):855-860. 25. Gomez JL, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48: 612-624. 26. Paula Judith Perez Espitia, Nilda de Fatima Ferreira Soares, Jane Selia dos Reis Coimbra, Nelio Jose de Andrade, Renato Souza Cruz, Eber Antonio Alves Medeiros (2012) Zinc Oxide Nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447-1464. 27. Hong R, Pan T, Qian J, Li H ( 2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119: 71-81. 28. Feldmann C (2005) Polyol-mediated synthesis of nanoscale functional materials. Solid State Sciences 7: 868-873.29. Chieng BW, Loo YY (2012). Synthesis of ZnO nanoparticles by modified polyol method. Mater Lett 73:78-82.30. Yu HF and Qian DW (2013) Characterization and photocatalytic kinetics of the ZnO powder prepared using a polyol process. Particulate Science and Technology, 31: 482487. DOI: 10.1080/02726351.2013.773390Feldmann C and Jungk HO (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40(2): 359-362.31. Zhang J, Zhu P, Li Z, Chen J, Wu Z, Zhang Z (2008) Fabrication of polycrystalline tubular ZnO via a modified ultrasonically assisted two-step polyol process and characterization of the nanotubes. Nanotechnology 19: 165605. doi:10.1088/0957-4484/19/16/16560532. Trenque I, Mornet S, Duguet E, Gaudon M (2013) New insights into crystallite size and cell parameters correlation for ZnO nanoparticles obtained from polyol-mediated synthesis. Inorg. Chem. 52, 12811-12817. doi.org/10.1021/ic402152f33. Bhatte KD, Sawant DN, Watile RA, Bhanage BM (2012) A rapid, one step microwave assisted synthesis of nanosize zinc oxide. Mater Lett 9: 66-68. 34. Mezni A, Kouki F, Romdhane S, Warot-Fonrose B, Joulie S, Mlayah A, Smiri LS (2012)Facile synthesis of ZnO nanocrystals in polyol. Mater Lett 86:153-156.35. Visinescu D, Scurtu M, Negrea R, Birjega R, Culita DC, Chifiriuc MC, Draghici C, Moreno JC, Musuc AM, Balint I (2015) Additive-free 1,4-butanediol mediated synthesis: a suitable route to obtain nanostructured, mesoporous spherical zinc oxide materials with multifunctional properties. RSC Adv. 5(121): 99976-99989. DOI: 10.1039/c5ra20224h.36. Bell NS, Tallant DR (2009) Ripening and growth of zinc oxide nanorods from nanoparticles in 1,4 butanediol solvent. J Sol-Gel Sci Technol 51(2): 158-168. DOI 10.1007/s10971-009-1967-537. 魏邵东.纳米氧化锌的现状与发展[J].化工设计通讯.2006.12, 32(4): 22-24.宋怡健.氧化锌纳米材料制备与物性研究[D].上海交通大学,2009.38. 王彦华.无机纳米抗紫外剂的研究进展[J].上海建材,2003,04:6-8.39. 欧阳成,李红超,常卿卿,田磊,荆旭冬,周蓉.纳米氧化锌的制备现状及发展趋势[J].湿法冶金,2011,03:190-193.40.安予生.聚苯胺/氧化锌纳米复合光催化剂的制备及性能研究.安徽大学硕士学位论文,2014.41. 张荣良,史爱波,金云学.纳米氧化锌的制备与应用研究[J].无机盐工业,2011,10:1-4.42. 杨凤霞,刘其丽,毕磊.纳米氧化锌的应用综述[J].安徽化工,2006,01:13-17.43.王肖鹏,薛永强.均匀沉淀法制备不同粒径的纳米氧化锌[J].广东化工,2010,04:37-39.44. 李昊坤.均匀沉淀法制备纳米氧化锌的工艺研究[D].西安科技大学,2006.45.李艳,于娜娜,王笃政.纳米氧化锌的制备工艺研究[J].化工新型材料.2012.40(7):34-36.46. 王久亮,刘宽,秦秀娟,邵光杰.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004,02:226-230.47. 王彦华.无机纳米抗紫外剂的研究进展[J].上海建材,2003,04:6-8.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图