3D打印技术在青霉素G酰化酶固定化中的应用任务书
2020-05-01 08:40:17
1. 毕业设计(论文)的内容和要求
论文内容本课题以实验室筛得的粪产杆菌来源的青霉素酰化酶g为对象,通过发酵破碎浓缩得到粗酶液。
以碳纤维支撑的聚乳酸(c-pla)为载体,通过食人鱼溶液处理,再使用硅烷偶联剂对其表面进行活性改性,向载体表面引入氨基基团,使得青霉素g酰化酶可以通过共价结合固定在载体上,最后利用固定化酶合成阿莫西林。
通过对本课题的研究可以为工业化酶法合成β-内酰胺类抗生素提供研究思路,获得形貌可控,机械结构稳定,担载量大的3d打印固定化载体,使得固定化酶在灵活适应各式反应器结构和工艺参数方面成为可能,大大降低后续分离的成本,也增加了效率。
2. 参考文献
[1]Flores G, Sober#243;n X, Osuna J. Production of a fully functional, permuted single-chain penicillin G acylase[J]. Protein Science A Publication of the Protein Society, 2004, 13(6):1677-1683. [2] Silman I, Katchalski E. Water-insoluble derivatives of enzymes, antigens, and antibodies[J]. Annual Review of Biochemistry, 1966, 35(35):873. [3] 崔鹏, 万敏. 青霉素酰化酶的生产与应用新进展[J]. 能源化工, 2005, 26(6):42-45. [4] 杨正. 青霉素酰化酶的分离纯化和固定化研究新进展[J]. 安徽化工, 2010, 36(3):7-10. [5] Topgi R S, Ng J S, Landis B, et al. Use of enzyme penicillin acylase in selective amidation/amide hydrolysis to resolve ethyl 3-amino-4-pentynoate isomers.[J]. Bioorganic amp; Medicinal Chemistry, 1999, 7(10):2221-9. [6] Fuganti C, Grasselli P, Casati P. Immobilized penicillinacylase: Application to the synthesis of the dipeptide aspartame[J]. Tetrahedron Letters, 1986, 27(27):3191-3194. [7] 安蔚. 酶法合成头孢氨苄过程中固定化青霉素酰化酶酶活稳定性及其再生研究[D]. 河北科技大学, 2016. [8] 陆健美. 合成阿莫西林用青霉素酰化酶在大肠杆菌中的表达[D]. 北京化工大学, 2013. [9] 黄艳红, 袁中一, 王应睐. 巨大芽孢杆菌青霉素酰化酶在枯草杆菌中的表达及其分离纯化[J]. 中国生物化学与分子生物学报, 1999, 15(1):169-171. [10] Silman I, Katchalski E. Water-insoluble derivatives of enzymes, antigens, and antibodies[J]. Annual Review of Biochemistry, 1966, 35(35):873. [11] Kaasgaard S, Karlsen L G K, Schneider I B. PROCESS FOR SEPARATION OF TWO SOLID COMPONENTS: EP, EP0569462[P]. 1993. [12] Romero O, Guis#225;n J M, Illanes A, et al. Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme-support attachment and enzyme load[J]. Journal of Molecular Catalysis B Enzymatic, 2012, 74(3):224-229. [13] Chibata I. Immobilized enzymes, research and development[J]. Quarterly Review of Biology, 1978. [14] Chandel A K, Rao L V, Narasu M L, et al. The realm of penicillin G acylase in β-lactam antibiotics[J]. Enzyme amp; Microbial Technology, 2008, 42(3):199-207. [15] 鲜海军, 王祯祥. 以聚丙烯腈纤维为载体制备固定化青霉素G酰化酶的研究[J]. 微生物学报, 2001, 41(4):475-480. [16] Tidwell T T. Hugo (Ugo) Schiff, Schiff bases, and a century of beta-lactam synthesis.[J]. Angewandte Chemie, 2008, 47(6):1016-20. [17] Arroyo M, De l M I, Acebal C, et al. Biotechnological applications of penicillin acylases: state-of-the-art.[J]. Applied Microbiology amp; Biotechnology, 2003, 60(5):507-14. [18] Sheldon R A. Enzyme Immobilization: The Quest for Optimum Performance[J]. Cheminform, 2007, 38(36):no-no. [19] Aytar B S, Bakir U. Preparation of cross-linked tyrosinase aggregates[J]. Process Biochemistry, 2008, 43(2):125-131. [20] Luuk M. van Langen,#8224;, Rhoderick P. Selassa, Fred van Rantwijk, and,等. Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation.[J]. Organic Letters, 2005, 7(2):327-329. [21] Kim M I, Kim J, Lee J, et al. One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization[J]. Microporous amp; Mesoporous Materials, 2008, 111(1):18-23. [22] Wilson L, Illanes A, Pessela B C, et al. Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media.[J]. Biotechnology amp; Bioengineering, 2004, 86(5):558-62. [23] Kim H W, Chung M G, Kim Y B, et al. Graft copolymerization of glycerol 1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility[J]. International Journal of Biological Macromolecules, 2008, 43(3):307-313. [24] 曹林秋,杨晟, 袁中一. 载体固定化酶 : 原理、应用和设计 : Carrier-bound immobilized enzymes : principles, applications and design[M]. 化学工业出版社, 2008.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.28~2019.1.16 进行课题的调研和文献查阅、相关实验技能学习 2019.3.3~2019.3.30 修饰及制备3D打印载体,进行酶的固定化 2019.4.1~2019.4.30 酶学性质的测定 2019.5.1~2019.5.29 β-内酰胺类抗生素的合成 2019.5.31~2019.6.7 毕业论文撰写、答辩