嘌呤核苷磷酸化酶与嘧啶核苷磷酸化酶融合表达及其催化合成嘌呤核苷类药物的研究任务书
2020-05-04 21:37:01
1. 毕业设计(论文)的内容和要求
在酶法合成嘌呤核苷类似物时,主要是用嘧啶核苷磷酸化酶水解嘧啶类核苷提供核糖供体,再加入嘌呤碱基,在嘌呤核苷磷酸酶的作用下催化合成嘌呤核苷。
其原因如下:1、嘧啶和嘌呤核苷磷酸化酶在热动力学方面分别偏向于水解合成,双酶催化有利于产物的累积。
2、第一步反应所产生的嘧啶碱基,不会参与第二步反应,不会因为积累而抑制第二步反应。
2. 参考文献
[1] Robak, T. and P. Robak, Purine nucleoside analogs in the treatment of rarer chronic lymphoid leukemias. Current Pharmaceutical Design, 2012. 18(23): p. 3373-3388. [2] Herschel Wallen, J.A.T.J., Fludarabine Modulates Immune Response and Extends In Vivo Survival of Adoptively Transferred CD8 T Cells in Patients with Metastatic Melanoma. Plos One, 2009. 4(3): p. e4749. [3] Bastin-Coyette, L., et al., Mechanisms of cell death induced by 2-chloroadenosine in leukemic B-cells. Biochemical Pharmacology, 2008. 75(75): p. 1451-1460. [4] Montgomery, J. and K. Hewson, Nucleosides of 2-Fluoroadenine. Journal of Medicinal Chemistry, 1969. 12(12): p. 498-504. [5] Lapponi, M.J., et al., New developments in nucleoside analogues biosynthesis: A review. Journal of Molecular Catalysis B Enzymatic, 2016. 133: p. 218-233. [6] Shugar D. Purine nucleoside phosphorylases: properties, functions, and chemotherapeutic applications[J]. Cellular Molecular Biology Letters, 1999, 04. [7] Serra I, Daly S, Alcantara A R, et al. Redesigning the synthesis of Vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases[J]. Rsc Advances, 2015, 5(30):23569-23577. [8] Trinh R, Gurbaxani B, Morrison S L, et al. Optimization of codon pair use within the (GGGGS) linker sequence results in enhanced protein expression[J]. Molecular Immunology, 2004, 40(10):717-722. [9] Sivaraj Sivaramakrishnan, James A. Spudich. Systematic control of protein interaction using a modular ER/K α-helix linker[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51):20467-20472. [10] Pugmire M J, Ealick S E. Structural analyses reveal two distinct families of nucleoside phosphorylases[J]. Biochemical Journal, 2002, 361(Pt 1):1-25. [11] 高鑫. 多酶在胞内外的超分子自组装研究[D]. 华东理工大学, 2016. [12] Zhu S, Song D, Gong C, et al. Biosynthesis of nucleoside analogues via thermostable nucleoside phosphorylase[J]. Applied Microbiology Biotechnology, 2013, 97(15):6769-6778. [13] Zhou, Xinrui, Szeker, Kathleen, Jiao, Lin‐Yu, et al. Synthesis of 2,6‐Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases[J]. Advanced Synthesis Catalysis, 2015, 357(6):1237-1244.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.26~2019.1.16 查阅、收集文献资料 2019.3.1~2019.3.30 融合蛋白linker的选择,以及引物的设计 2019.4.1~2019.4.30 融合蛋白表达菌株的构建以及表达 2019.5.1~2019.5.29 融合蛋白活性的测定及在合成中的应用 2019.5.30~2019.6.6 论文撰写及答辩