PNIPAm在药物释放中的应用文献综述
2020-05-31 20:48:50
文 献 综 述
水凝胶具有溶胀的三维结构,其内部虽然含有大量的水,但不会发生溶解现象[1]。水凝胶的这个特性非常适用于水合反应,因此水凝胶与人体组织存在极高的生物相容性。由于具有生物相容性,可降解性,无毒性,药物负载能力高,释放速率易于控制和载药相对稳定等优点,因此水凝胶非常适用于生物医学的应用,例如药物递送和组织工程等[2]。
通常,水凝胶可以分为两类,即常规和智能水凝胶。后者能够通过接受外部刺激,例如pH[3],温度[4],电场和磁场[5]等,来耦合更多的水凝胶[6],从而改变其形状和体积。
众所周知,人体在病原体或接受致热原的情况下,体温常常偏离生理值(37℃),故温度是脉冲性药物释放中应用最广泛的触发剂之一。该偏差可以用作激活治疗剂,刺激温度响应递送系统以便释放有用的刺激物。因此,近年来热敏性水凝胶在不同领域都有潜在的应用前景,于是吸引了研究者们的广泛兴趣,例如将其用于蛋白质配体识别[7],制作药物传递的开关[8],模拟人工器官[9]和酶固定[10,11]。
聚N-异丙基丙烯酰胺(PNIPAm)是众多温敏聚合物中,最广泛应用于药物释放研究的聚合物[12,13]。目前已经报道了PNIPAm热敏水凝胶膜的制备,通过不同的方法合成的水凝胶膜可以作为药物递送的载体。Abdon Pena-Francesch等[14]报道了在亲水性共聚单体的存在下,通过一系列引发剂,采用化学气相沉积法制备PNIPAm热响应性水凝胶膜和乙二醇二丙烯酸酯。Korotych等[15]将PNIPAm和N,N'-亚甲基双丙烯酰胺交联原位聚合,内部包裹磁铁矿,制备了对温度和磁场都敏感的水凝胶膜。Petrusic等人[16]报道了针对由逆悬浮聚合的PNIPAm的结构和性质的优化方法。Minghonga等[17]提出使用聚丙烯作为基质将PNIPAm接枝到其表面上。另外,还有研究者考查了温度与水凝胶膜的溶胀性质之间的相关性,释放曲线和阵列参数,例如通过采用适当的数学模型[18-21]广泛评估交联点之间的数均分子量,阵列的网格大小ξ和平衡溶胀比q。
在控制药物递送的动力学和效率方面,药物分子和聚合物链之间的相互作用是至关重要的。客体分子的化学性质和潜在的药物#8212;聚合物相互反应对于研究肿胀行为和释放过程是至关重要的,然而这些因素还没有被完全解释清楚[22,23]。当一个小分子可逆地或不可逆地与聚合物链相互作用时,凝胶基质中的相互作用将决定释放速率[24]。分子和凝胶阵列可以通过药物与聚合物链的结合或通过改变溶胀性能来抑制释放[22,23]。故我们进行溶胀性能的研究,把药物装载到凝胶膜中,在聚合过程中作为时间的函数测量反应混合物中已知的药物浓度。PNIPAm水凝胶在较低的临界溶解温度(LCST)下表现出非线性体积相变(VPT)约34℃,这接近于人体的自然温度[25],故可以进行体外药物释放的研究。
综上所述,将热敏水凝胶应用于药物释放研究方面,具有非常重要的意义。这不仅能够为药物释放提供新型的智能型材料,而且能够在微观领域研究分子间的作用机制,从而为靶向性治疗疾病奠定基础。
参 考 文 献
[1] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27#8211;46.
[2] R. Langer, D.A. Tirrell, Designing materials for biology and medicine, Nature, 428 (2004) 487#8211;492.
[3] U.G. Spizzirri, F. Iemma, I. Altimari, M. Curcio, F. Puoci, N. Picci, Grafted gelatin microspheres as potential pH-responsive devices, J. Mater. Sci. 47 (2012) 3648#8211;3657.
[4] M. Curcio, F. Puoci, U.G. Spizzirri, F. Iemma, O.I. Parisi, G. Cirillo, N. Picci, Negative thermo-responsive microspheres based on hydrolyzed gelatin as drug delivery device, AAPS PharmSciTech 11 (2010) 652#8211;662.
[5] U.G. Spizzirri, S. Hampel, G. Cirillo, F.P. Nicoletta, A. Hassan, V. Orazio, N. Picci, F. Iemma, Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery devices, Int. J. Pharm. 448 (2013) 115#8211;122.
[6] G. Cirillo, F. Iemma, U.G. Spizzirri, F. Puoci, M. Curcio, O.I. Parisi, N. Picci, Synthesis of stimuli-responsive microgels for in vitro release of diclofenac diethyl ammonium, J. Biomater. Sci. Polym. Ed. 22 (2011) 823#8211;844.
[7] I.N. Savina, M. Dainiak, H. Jungvid, S.V. Mikhalovsky, I.Y. Galaev, Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold, J. Biomater. Sci. Polym. Ed. 20 (2009) 1781#8211;1795.
[8] E. Lee, B. Kim, Preparation and characterization of pH-sensitive hydrogel microparticles as a biological on#8211;off switch, Polym. Bull. 67 (2011) 67#8211;76.
[9] M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D.M. Vignjevic, J.-L. Viovy, A review
of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials 35 (2014) 1816#8211;1832.
[10] R.A. Sheldon, S. Van Pelt, Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev. 42 (2013) 6223#8211;6235.
[11] G. Cirillo, F.P. Nicoletta, M. Curcio, U.G. Spizzirri, N. Picci, F. Iemma, Enzyme immobilization on smart polymers: catalysis on demand, React. Funct. Polym. 83 (2014) 62#8211;69.
[12] U.G. Spizzirri, F. Iemma, F. Puoci, F. Xue, W. Gao, G. Cirillo, M. Curcio, O.I. Parisi, N. Picci, Synthesis of hydrophilic microspheres with LCST close to body temperature for controlled dual-sensitive drug release, Polym. Adv. Technol. 22 (2011) 1705#8211;1712.
[13] L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications, Eur. J. Pharm. Biopharm. 68 (2008) 34#8211;45.
[14] A. Pena-Francesch, L. Montero, S. Borr#243;s, Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD, Langmuir 30 (2014) 7162#8211;7167.
[15] O. Korotych, Yu. Samchenko, I. Boldeskul, Z. Ulberg, N. Zholobak, L. Sukhodub, Nisopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique, Mater. Sci. Eng. C 33 (2013) 892#8211;900.
[16] S. Petrusic, M. Lewandowski, S. Giraud, P. Jovancic, B. Bugarski, S. Ostojic, V. Koncar, Development and characterization of thermosensitive hydrogels based on poly(Nisopropylacrylamide) and calcium alginate, J. Appl. Polym. Sci. 124 (2012) 890#8211;903.
[17] W. Minghonga, B. Bao, J. Chen, Y. Xu, S. Zhou, Z.-T. Ma, Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one#8211;off switching for controlled release of drugs, Radiat. Phys. Chem. 56 (1999) 341#8211;346.
[18] D.L. Meadows, N.A. Peppas, Solute diffusion in swollen membranes. III. Nonequilibrium thermodynamic aspects of solute diffusion in polymer network membranes, Chem. Eng. Commun. 31 (1984) 101#8211;119.
[19] P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release 5 (1987) 23#8211;36.
[20] N.A. Peppas, J.J. Sahlin, A simple equation for the description of solute release III. Coupling of diffusion and relaxation, Int. J. Pharm. 57 (1989) 169#8211;172.
[21] A.V. Reis, M.R. Guilherme, A.F. Rubira, E.C. Muniz, Mathematical model for the prediction of the overall profile of in vitro solute release from polymer networks, J. Colloid Interface Sci. 310 (2007) 128#8211;135.