基于限域空腔内二氧化硅包裹HRP的生物活性研究任务书
2020-06-08 21:15:24
1. 毕业设计(论文)的内容和要求
1.研究在微/纳米限域空腔内固定化酶的催化活性及生物稳定性,有助于模拟和深入了解那些发生在介观尺度内的酶促生化反应,为酶克服环境因素的体外研究提供一种可靠途径,因此以多种微/纳米反应器研究生物分子在限域空腔内特有的生物行为是目前生命科学和生物医学领域的研究热点。
2.反相微乳液法是通过寻找一种或多种微乳液的配制方法来合成出不同尺寸和形状的粒子,从而得到所需性质的相关材料的一种材料制备方法。
该方法具有设备简单,操作简便,反应条件温和,制备所得的纳米颗粒粒度均一等优点。
2. 参考文献
[1] Panda A K, Moulik S P, Bhowmik B B, Das A R: Dispersed molecular aggregates: II. Synthesis and characterization of nanoparticles of tungstic acid in H2O/(TX-100 alkanol)/n-heptane W/O microemulsion media [J]. J Colloid Interf Sci 2001, 235(2):218-226. [2] Panda A K, Bhowmik B B, Das A R, Moulik S P: Dispersed molecular aggregates. 3. Synthesis and characterization of colloidal lead chromate in water/sodium bis(2-ethylhexyl) sulfosuccinate/n-heptane water-in-oil microemulsion medium [J]. . Langmuir 2001, 17(6):1811-1816. [3] Arriagada F J, Osseo-Asare K: Synthesis of nanosize silica in aerosol OT reverse microemulsions [J]. J Colloid Interf Sci 1995, 170(1):8-17. [4] Arriagada F J, Osseo-Asare K: Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration [J]. J Colloid Interf Sci 1999, 211(2):210-220. [5] 何晓晓, 石碧华, 王柯敏, 冕 陈, 谭蔚泓: 基于反相微乳液法的尺寸可控性二氧化硅纳米粒子制备研究[J]. 湖南大学学报( 自然科学版) 2010, 37(4):62-66. [6] Qian J, Zhou Z, Cao X, Liu S: Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32 -encapsulated silica nanosphere labels [J]. Anal Chim Acta 2010, 665(1):32-38. [7] Jain T K, Roy I, De T K, Maitra A: Nanometer Silica Particles Encapsulating Active Compounds: A Novel Ceramic Drug Carrier [J]. J Am Chem Soc 1998, 120(43):11092-11095. [8] Qian L, Yang X R: One-Step synthesis of Ru(2,2′-bipyridine)3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection [J]. Adv Funct Mater 2007, 17(8):1353-1358. [9] Sharma R K, Das S, Maitra A: Enzymes in the cavity of hollow silica nanoparticles [J]. J Colloid Interf Sci 2005, 284(1):358-361. [10] Zanarini S, Rampazzo E, Ciana L D, Marcaccio M, Marzocchi E, Montalti M, Paolucci F, Prodi L: [Ru(bpy)3]2 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification [J]. J Am Chem Soc 2009, 131(6):2260-2267. [11] Wei H, Liu J, Zhou L, Li J, Jiang X, Kang J, Yang X, Dong S, Wang E: [Ru(bpy)3]2 -doped silica nanoparticles within layer-by-layer biomolecular coatings and their application as a biocompatible Electrochemiluminescent tag material [J]. Chem Eur J 2008, 14(12):3687-3693. [12] Wei H, Zhou L, Li J, Liu J, Wang E: Electrochemical and electrochemiluminescence study of [Ru(bpy)3]2 -doped silica nanoparticles with covalently grafted biomacromolecules [J]. J Colloid Interf Sci 2008, 321(2):310-314. [13] Zhang L, Dong S: Electrogenerated chemiluminescence sensors using Ru(bpy)32 doped in silica nanoparticles [J]. Anal Chem 2006, 78(14):5119-5123. [14] Wu Y, Zhou H, Wei W, Hua X, Wang L, Zhou Z, Liu S: Signal amplification cytosensor for evaluation of drug-induced cancer cell apoptosis [J]. Anal Chem 2012, 84(4):1894-1899. [15] Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, Fang Y: Detection of thrombin using electrogenerated chemiluminescence based on [Ru(bpy)3]2 -doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal Chim Acta 2007, 598(2):242-248. [16] Sun Q, Zhang X: Electrochemiluminescence DNA sensor based on [Ru(bpy)3]2 -doped silica nanoparticle labeling and proximity-dependent surface hybridization assay [J]. J Solid State Electr 2011, 16(1):247-252. [17] Chang Z, Zhou J, Zhao K, Zhu N, He P, Fang Y: [Ru(bpy)3]2 -doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization [J]. Electrochim Acta 2006, 52(2):575-580. [18] Yang H-H, Zhang S-Q, Chen X-L, Zhuang Z-X, Xu J-G, Wang X-R: Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal Chem 2004, 76(5):1361-1321. [19] Nara S, Tripathi V, Chaube S K, Rangari K, Singh H, Kariya K P, Shrivastav T G: A novel enzyme-linked immunosorbent assay for cortisol using a long-chain biotinylated cortisol-3-CMO derivative [J]. J Immunoassay Immunochem 2008, 29(4):390-405. [20] Tang D, Su B, Tang J, Ren J, Chen G: Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads [J]. Anal Chem 2010, 82(4):1527-1534. [21] Zhong Z, Li M, Xiang D, Dai N, Qing Y, Wang D, Tang D: Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels [J]. Biosens Bioelectron 2009, 24(7):2246-2249. [22] Bagwe R P, Khilar K C: Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT [J]. Langmuir 2000, 16(3):905-910. [23] Hun X, Zhang Z: A Novel Electrogenerated Chemiluminescence (ECL) Sensor Based on Ru(bpy)32 -Doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode [J]. Electroanalysis 2008, 20(8):874-880. [24] Zhang L, Zhang Q, Li J: Direct electrochemistry and electrocatalysis of myoglobin covalently immobilized in mesopores cellular foams [J]. Biosens Bioelectron 2010, 26(2):846-849. [25] Wu S, Ju H X, Liu Y: Conductive mesocellular silica#8211;carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins [J]. Adv Funct Mater 2007, 17(4):585-592. [26] Zhang L, Zhang Q, Li J: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic#8211;organic hybrid film [J]. Electrochem Commun 2007, 9(7):1530-1535. [27] Dai Z, Liu S, Ju H, Chen H: Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens Bioelectron 2004, 19(8):861-867. [28] Mahtab F, Yu Y, Lam J W Y, Liu J, Zhang B, Lu P, Zhang X, Tang BZ: Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications [J]. Adv Funct Mater 2011, 21(9):1733-1740. [29] Wang Q, Lu G, Yang B: Myoglobin/sol-gel film modified electrode: direct electrochemistry and electrochemical catalysis [J]. Langmuir 2004, 20(4):1342-1347. [30] George P, Hanania G: A spectrophotometric study of ionizations in methaemoglobin [J]. Biochem J 1953, 55(2):236-243. [31] Bansal V, Syed A, Bhargava S K, Ahmad A, Sastry M: Zirconia enrichment in zircon sand by selective fungus-mediated bioleaching of silica [J]. Langmuir 2007, 23(9):4993-4998. [32] Gu B X, Xu C X, Zhu G P, Liu S Q, Chen L Y, Wang M L, Zhu J J: Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing [J]. J Phys Chem B 2009, 113(18):6553-6557. [33] Li B, Du Y, Li T, Dong S: Investigation of 3,3',5,5'-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme [J]. Anal Chim Acta 2009, 651(2):234-240. [34] Dai Z, Bao J, Yang X, Ju H: A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores [J]. Biosens Bioelectron 2008, 23(7):1070-1076. [35] Laviron E: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system [J]. J Electroanal Chem 1979, 101(1):19-28. [36] Kamin R A, Wilson G S: Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal Chem 1980, 52(8):1198-12058. [37] Xie Q, Zhao Y, Chen X, Liu H, Evans D G, Yang W: Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor [J]. Biomaterials 2011, 32(27):6588-6594. [38] Wang B, Zhang J J, Pan Z Y, Tao X Q, Wang H S: A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film [J]. Biosens Bioelectron 2009, 24(5):1141-1145. [39] Cao Z, Zhang J, Zeng J, Sun L, Xu F, Zhang L, Yang D: Mesoporous silica hollow sphere (MSHS) for the bioelectrochemistry of horseradish peroxidase [J]. Talanta 2009, 77(3):943-947.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2.21 与导师会面,布置论文题目及要求 2.22-2.28 查阅资料,完成开题报告和任务书 3.1-3.5 准备实验所需药品和器材 3.6-4.5 二氧化硅包裹酶的合成及后处理 4.6-4.20 摸索合成后的分析条件 4.21-5.9 合成后的分析表征 5.10-5.31 数据整理,书写论文,制作PPT 6.1-6.10 准备论文答辩