掺杂MnO纳米薄膜的制备及嵌钠性质研究毕业论文
2021-06-07 22:37:11
摘 要
电极材料是决定超级电容器性能的关键性因素。纳米尺寸的电极材料因其独特的表面效应、小尺寸效应以及量子尺寸效应而具有超强的电荷存储能力,可显著提高电化学反应的效率及活性材料的利用率,进而提高其能量密度和功率密度,因此受到了人们的广泛关注。二氧化锰由于储量丰富、价格低廉、对环境友好、具有多种氧化价态和丰富的结果,以及在中性电解液中良好的电容特性,及较宽的电位窗口,而成为近年来极具发展潜力的一种超级电容器电极材料。鉴于锰系材料中MnO2材料已得到广泛研究,我们提出用铜或者镍掺杂(改善导电性)的MnO纳米薄膜作为研究对象,在钠离子溶液中以三电极系统做电化学测试,分析嵌钠特性和机理。
本研究采用水热合成法,直接在钛片基底上合成了Ni0.25Mn0.75O和Cu0.25Mn0.75O纳米薄膜,运用X射线衍射仪和扫描电子显微镜对Ni0.25Mn0.75O进行结构和形貌表征,在结构层面揭示了其作为超级电容器电极材料的可行性。本研究将所制备的纳米薄膜作为工作电极,在不同钠离子浓度中性溶液中进行电化学测试,对电极材料的比电容、充放电性能和循环性能进行了研究,同时对钠离子的嵌入机理作了思考。对于Cu0.25Mn0.75O纳米薄膜电极,首次放电电容和充电电容为0.048F/cm2和0.054F/cm2,循环100次后电极具有0.069F/cm2放电电容和0.075F/cm2充电电容。结果表明镍和铜掺杂的MnO纳米薄膜都表现出了良好的电容行为,均可以用于超级电容器材料。本研究为之前鲜有涉及的超级电容器用MnO纳米材料的制备提供了方法,为MnO纳米材料的嵌钠研究提供了新的思路;改进后的MnO纳米电极材料值得进一步研究和探索。
关键词:超级电容器;MnO纳米薄膜;钠离子浓度;电化学测试;掺杂
Abstract
Electrode material is the key factor that decides the performance of supercapacitor. Nano size electrode materials have superior charge storage capacity due to its unique surface effect, small size effect and quantum size effect, which can significantly improve the electrochemical reaction efficiency and active material utilization efficiency, improve its energy density and power density, thus attracting much attention. MnO2 has become a kind of super capacitor electrode material, which has great potential for development in recent years, due to the abundant reserves, low prices, friendly environment, a variety of oxidation state and rich results. In addition, in the neutral electrolyte it has good capacitance characteristics and a wide potential window. Since the manganese oxides MnO2 materials have been extensively studied, we present herein nano MnO film with Ni or Cu doping (improve electrical conductivity) as the research object, and investigate the electrochemical performance in sodium ions electrolyte in a three electrode system, and further analyze the energy storage and mechanism.
In this thesis, Ni0.25Mn0.75O and Cu0.25Mn0.75O nano films were synthesized on titanium substrate by hydrothermal method. The structure and morphology of Ni0.25Mn0.75O were characterized by X-ray diffraction and scanning electron microscope, which revealed the feasibility of the electrode material as a super capacitor at the structural level. The nano thin film was used as the working electrode, electrochemical test was carried out in the neutral solution with different sodium ion concentration, and the specific capacitance, charge discharge performance and cycle capability of the electrode materials were studied. At the same time, the mechanism of the intercalation of sodium ions was also discussed. For the Cu0.25Mn0.75O nano thin film electrode, the first discharge capacitance and charge capacitance are 0.048F/cm2 and 0.054F/cm2. the electrode has 0.069F/cm2 discharge capacitance and 0.075F/cm2 charging capacitance after 100 times cycle. The results show that Ni and Cu doped MnO nano thin films show good capacitance behavior and can be used as the electrode materials of the super capacitor. This study presents a method for the preparation of MnO nano materials for super capacitors, which provides a way for the study of MnO nano materials, and it is worth further research and exploration to improve the MnO nano materials.
Key words: super capacitor; MnO nano film; sodium ion concentration; electrochemical test; doping
目录
第一章 绪论 1
前言 1
1.1 超级电容器的分类 1
1.2 超级电容器的特点 2
1.2.1 双电层电容器 2
1.2.2 法拉第赝电容器 3
1.2.3 混合型超级电容器 4
1.3 超级电容器的材料和电解液 5
1.3.1 超级电容器用电极材料 5
1.3.2 超级电器用电解液 5
1.4 超级电容器的应用和发展前景 6
1.4.1 超级电容器的应用 6
1.4.2 超级电容器的发展前景 8
1.5 研究内容和意义 8
1.5.1 基本内容 8
1.5.2 研究意义 9
第二章 实验 10
2.1 MnO纳米薄膜的制备 10
2.1.1 实验药品 10
2.1.2 实验仪器 10
2.1.3 实验方案 10
2.2 电极表征 11
2.3 电化学性能测试 11
2.3.1 药品和仪器 11
2.3.2 循环伏安测试 12
2.3.3 恒电流充放电测试 12
2.3.4 交流阻抗测试 12
2.3.5 测试方案 12
第三章 数据处理和分析 14
3.1 电极表征 14
3.2 电化学性能测试 15
3.2.1 循环伏安特性研究 15
3.2.2 充放电曲线的研究 16
3.2.3 阻抗性能的研究 18
3.2.4循环性能研究 19
第四章 结果与讨论 20
参考文献 21
致谢 22
第一章 绪论
前言
能源资源短缺和环境持续恶化是困扰当前社会经济发展和民众生活的主要问题,寻找开发清洁能源已经成为全世界最受关注的话题之一。随着社会经济和科技的发展,各种新型能源的开发和利用要求科研工作者们研发出不同种类的能量储存装置以实现新能源的高效转化和利用。
超级电容器的发展始于20世纪60年代,在20世纪90年代,由于混合电动汽车的兴起,超级电容器受到了广泛的关注并由此迅速发展起来。超级电容器是介于传统电容器和充电电池之间的一种新型能量储存装置,其容量范围可达几百至上千法拉。与传统电容器相比,它具有较大的容量、较高的能量、较宽的工作电压范围和极长的使用寿命,传统电容以µF(微法)标称电容量,而超级电容器静电容量可达到10万F以上;而与蓄电池相比,它又具有较高的功率密度和更长的循环寿命,且对环境无污染[1]。因此,超级电容器结合了传统电容器与电池的优点,是一种应用前景广阔的化学电源,属于新兴的功率补偿和储能装置范畴。