基于金纳米棒构建电化学传感器对甘油三酯的检测任务书
2020-05-02 18:28:58
1. 毕业设计(论文)的内容和要求
①查阅相关文献;②撰写文献综述;③制定实验具体方案;④完成既定的实验方案;⑤整理实验数据;⑥通过毕业答辩。
要求:学生必须以严谨的态度对待毕业研究工作。
学生要熟练掌握中、英文文献的查阅方法,并学会撰写文献综述;在文献综述的基础上,根据国内外研究情况及实验室所具备的条件制定一个切实可行的实验方案;在实验过程中要学会观察、善于思考,对实验过程中发现的问题要积极开动脑筋,找出问题所在,并能提出自己的观点。
2. 参考文献
[23] YasuoSakai, MasahitoHayatsu, KoichiHayano., Use of tween 20 as a substrate for assay of lipase activity in soils, Soil Sci Plant Nutr., 2002, 48, 5, 729-734. [24] Pratt, J., Cooley, J. D., Purdy, C. W., Straus, D. C., Lipase activity from strains of pasteurella multocida, Curr Microbiol., 2000, 40, 5, 306-309. [25] Hostack#225;, A., Lipase activity of acinetobacter baumannii after treatment with meropenem, Arzneim.-Forsch., 2000, 50, 12, 1134-1137. [26] Chang, H. C., Ho, J. A., Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles, Anal. Chem., 2015, 87, 20, 10362-10367. [27] APAPonomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., et al., Chaotic dirac billiard in graphene quantum dots, Science., 2007, 320, 5874, 356-358. [28] Xia, C., Hai, X., Chen, X. W., Wang, J. H., Simultaneously fabrication of free and solidified n, s-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection, Talanta., 2017, 168, 269-278. [29] Li, N., Wang, X. W., Chen, J., Sun, L., Chen, P., Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors, 2d Mater., 2015, 2, 3, 034018. [30] Lu, H. F., Zhang, M. M., Wu D., Huang J. L., Zhu L. L., Wang, C. M., Zhang, Q. L., Colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in L-02 cells and its application in living cell imaging based on in-situ growth of silver nanoparticles on grapheme quantum dots, Sensors Actuat B-Chem., 2018, 258, 461-469. [31] Ruiz-Palomero, C., Ben#237;tez-Mart#237;nez, S., Soriano, M. L., Valc#225;rcel, M., Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase, Anal Chim Acta., 2017, 974, 93-99. [32] Peng, X. L., Hu, T. X., Bao, T., Zhao, L., Zeng, X., Wen, W., Zhang, X. H., Wang, S. F., A label-free electrochemical biosensor for methyltransferase activity detection and inhibitor screening based on graphene quantum dot and enzyme-catalyzed reaction, J Electroanal Chem., 2017, 799, 327#8211;332. [33] Kermani, H. A., Hosseini, M., Dadmehr, M., Hosseinkhani, S., Ganjali, M. R., Dna methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy, Sensors Actuat B-Chem., 2017, 241, 217-223. [34] Qu, Z. B., Zhou, X. G., Gu, L., Lan, R. M., Sun, D. D., Yu, D. j., et al., Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate, Chem Commun., 2013, 49, 84, 9830-9832. [35] He, T., Qi, L., Zhang, J., Huang, Y. L., Zhang, Z. Q., Enhanced graphene quantum dot fluorescence nanosensor for highly sensitive acetylcholinesterase assay and inhibitor screening, Sensors Actuators B Chemical., 2015, 215, 24-29. [36] Li, Y., Zhao, Y., Cheng, H. H., Hu, Y., Shi, G. Q., Dai, L. M., et al., Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, JACS., 2012, 134, 1, 15-18. [37] Ahirwar, S., Mallick, S., Bahadur, D., Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots, ACS Omega., 2017, 2, 11, 8343-8353. [38] Banerjee, S., Chakravarty, A. R., Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity, Acc. Chem. Res., 2015, 48, 7, 2075-2083. [39] G#243;mezmascaraque, L. G., Casagrande, S. C., Lg, D. L. T., L#243;pezrubio, A., Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin, Food Chem., 2017, 233, 343-350. [40] Kharat, M., Du, Z. Y., Zhang, G. D., Mcclements, D. J., Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of ph, temperature, and molecular environment, J Agric Food Chem., 2017, 65, 8, 1525. [41] Ratanajiajaroen, P., Watthanaphanit, A., Tamura, H., Tokura, S., Rujiravanitab, R., Release characteristic and stability of curcumin incorporated in β-chitin non-woven fibrous sheet using tween 20 as an emulsifier, European Polymer Journal., 2012, 48, 3, 512-523. [42] O'Toole, M. G., Henderson, R. M., Soucy, P. A., Fasciotto, B. H., Hoblitzell, P. J., Keynton, R. S., et al., Curcumin encapsulation in submicrometer spray-dried chitosan/tween 20 particles, Biomacromolecules., 2012, 13, 8, 2309-2314. [43] Malik, P., Ameta, R. K., Man, S., Physicochemical study of curcumin in oil driven nanoemulsions with surfactants, J Mol Liq., 2016, 220, 604-622. [44] Wang, X. Y., Gao, Y., Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with tween micelles, Food Chem., 2018,246,242-248. [45] Zhang, Q. Y., Zhang, C. H., Li, Z. B., Ge, J. Y., Li, C.Z., Dong, C., et al., Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter effect, Rsc Adv., 2015, 5, 115, 95054-95060. [46] Dong, Y. Q., Shao, J. W., Chen, C. Q., Li, H., Wang, R. X., Chi, Y. W., et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon., 2012, 50, 12, 4738-4743. [47] Bergonzi, M. C., Hamdouch, R., Mazzacuva, F., Isacchi, B., Bilia, A. R., Optimization, characterization and invitro, evaluation of curcumin microemulsions, LWT - Food Sci Technol., 2014, 59, 1, 148-155. [48] Zhang, W., Liu, J., Zhang, L., Gan, J. H., Ding, Y. Q., Huang, W., et al., A fluorescence nanosensor for lipase activity: enzyme-regulated quantum dots growth in situ, Rsc Adv., 2015, 5, 89, 73051-73057.
3. 毕业设计(论文)进程安排
以实验进程而定