登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 制药工程 > 正文

谷氨酸棒杆菌同步代谢葡萄糖和甲醇合成L-鸟氨酸的生理机制研究任务书

 2020-06-26 19:50:16  

1. 毕业设计(论文)的内容和要求

(1)掌握文献查阅的一般方法,学会在中国期刊网、web of science科学引文索引、springer link电子期刊、elsevier sdos电子期刊等检索资源上查阅关于微生物甲醇代谢途径、谷氨酸棒杆菌合成l-鸟氨酸等的相关文献,并对谷氨酸棒杆菌基因操作有全面了解。

(2)文献阅读及综述:阅读与课题相关的中英文文献,了解国内外的研究动态,撰写文献综述。

(3)明确实验任务,拟定实验方案:根据所查阅文献的内容,确定研究内容及方案,拟定科学可行的研究计划。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Le#223;meier L, Pfeifenschneider J, Carnicer M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate[J]. Applied microbiology and biotechnology, 2015, 99(23): 10163-10176. [2] Witthoff S, Schmitz K, Niedenf#252;hr S, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism[J]. Applied and environmental microbiology, 2015, 81(6): 2215-2225. [3] Le#223;meier L, Wendisch V F. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum[J]. BMC microbiology, 2015, 15(1): 216. [4] Choo S, Um Y, Han S O, et al. Engineering of Corynebacterium glutamicum to utilize methyl acetate, a potential feedstock derived by carbonylation of methanol with CO[J]. Journal of biotechnology, 2016, 224: 47-50. [5] Wendisch V F, Brito L F, Lopez M G, et al. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources[J]. Journal of biotechnology, 2016, 234: 139-157. [6] Lubitz D, Jorge J M P, P#233;rez-Garc#237;a F, et al. Roles of export genes cgmA and lysE for the production of l-arginine and L-citrulline by Corynebacterium glutamicum[J]. Applied microbiology and biotechnology, 2016, 100(19): 8465-8474. [7] Bennett R K, Steinberg L M, Chen W, et al. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs[J]. Current opinion in biotechnology, 2018, 50: 81-93. [8] Becker J, Gie#223;elmann G, Hoffmann S L, et al. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering[J]. 2016. [9] Witthoff S. Engineering of Corynebacterium glutamicum towards utilization of Methanol as carbon and energy source[M]. Biotechnologie, 2015. [10] Takeno S, Hori K, Ohtani S, et al. L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene[J]. Metabolic engineering, 2016, 37: 1-10. [11] Nguyen A Q D, Schneider J, Wendisch V F. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum[J]. Journal of biotechnology, 2015, 201: 75-85. [12] Heider S A E, Wendisch V F. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non‐natural products[J]. Biotechnology journal, 2015, 10(8): 1170-1184. [13] Kind S, Neubauer S, Becker J, et al. From zero to hero#8211;production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum[J]. Metabolic engineering, 2014, 25: 113-123. [14] Park J, Shin H, Lee S M, et al. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain[J]. Microbial Cell Factories, 2018, 17(1): 4. [15] Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production[J]. Nature communications, 2014, 5. [16] Cleto S, Jensen J V K, Wendisch V F, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)[J]. ACS synthetic biology, 2016, 5(5): 375-385. [17] Woo H M, Park J B. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum[J]. Journal of biotechnology, 2014, 180: 43-51. [18] Pfeifenschneider J, Brautaset T, Wendisch V F. Methanol as carbon substrate in the bio‐economy: Metabolic engineering of aerobic methylotrophic bacteria for production of value‐added chemicals[J]. Biofuels, Bioproducts and Biorefining, 2017. [19] N#230;rdal I, Pfeifenschneider J, Brautaset T, et al. Methanol‐based cadaverine production by genetically engineered Bacillus methanolicus strains[J]. Microbial biotechnology, 2015, 8(2): 342-350. [20] Jensen J V K, Eberhardt D, Wendisch V F. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine[J]. Journal of biotechnology, 2015, 214: 85-94. [21] Taniguchi H, Henke N A, Heider S A E, et al. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin[J]. Metabolic Engineering Communications, 2017, 4: 1-11. [22] Nguyen A D, Hwang I Y, Chan J Y, et al. Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels[J]. Biotechnology and bioprocess engineering, 2016, 21(4): 477-482. [23] Zhang B, Yu M, Zhou Y, et al. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production[J]. Microbial cell factories, 2017, 16(1): 158. [24] Reimer L C, Spura J, Schmidt-Hohagen K, et al. High-throughput screening of a Corynebacterium glutamicum mutant library on genomic and metabolic level[J]. PloS one, 2014, 9(2): e86799. [25] Zhang Y, Shang X, Lai S, et al. Reprogramming one-carbon metabolic pathways to decouple L-serine catabolism from cell growth in Corynebacterium glutamicum[J]. ACS Synthetic Biology, 2018. [26] Choi J W, Yim S S, Jeong K J. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum[J]. Applied microbiology and biotechnology, 2018, 102(2): 873-883. [27] Dai Z, Gu H, Zhang S, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae[J]. Bioresource Technology, 2017. [28] Gonzalez J E, Bennett R K, Papoutsakis E T, et al. Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein[J]. Metabolic engineering, 2018, 45: 67-74. [29] Whitaker W B, Jones J A, Bennett R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli[J]. Metabolic engineering, 2017, 39: 49-59. [30] Kim S Y, Lee J, Lee S Y. Metabolic engineering of Corynebacterium glutamicum for the production of L‐ornithine[J]. Biotechnology and bioengineering, 2015, 112(2): 416-421. [31] Zhang B, Ren L Q, Yu M, et al. Enhanced #671;-ornithine production by systematic manipulation of #671;-ornithine metabolism in engineered Corynebacterium glutamicum S9114[J]. Bioresource technology, 2017. [32] Hao N, Mu J, Hu N, et al. Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase[J]. Journal of industrial microbiology biotechnology, 2015, 42(2): 307-313. [33] Wendisch V F, Jorge J M P, P#233;rez-Garc#237;a F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum[J]. World Journal of Microbiology and Biotechnology, 2016, 32(6): 105. [34] Man Z, Rao Z, Xu M, et al. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H 2 O 2-forming flavin reductases and optimization of ATP supply[J]. Metabolic engineering, 2016, 38: 310-321. [35] Hwang G H, Cho J Y. Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum[J]. Journal of industrial microbiology biotechnology, 2014, 41(3): 573-578. [36] Kang M K, Lee J, Um Y, et al. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization[J]. Applied microbiology and biotechnology, 2014, 98(13): 5991-6002.

3. 毕业设计(论文)进程安排

2018.1-2018.2 熟悉实验原理和实验操作,查阅文献,对课题进行初步探索。

2018.3-2018.4 通过分析比较葡萄糖-甲醇双碳源发酵中细胞的生理状态参数,研究双碳源强化谷氨酸棒杆菌合成l-鸟氨酸的关键酶活性、能量积累等变化。

2018.4-2018.5 利用恒化培养手段,考察菌体生长速率对l-鸟氨酸合成的影响,进而从碳源本身及生长速率角度解析双碳源强化l-鸟氨酸合成的原因。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图