尿酸氧化酶与黄嘌呤脱氢酶在枯草芽孢杆菌中的表达及其应用研究任务书
2020-06-26 19:50:19
1. 毕业设计(论文)的内容和要求
(1)掌握文献查阅的一般方法,学会在中国期刊网、web of science科学引文索引、springer link电子期刊、elsevier sdos电子期刊等检索资源上查阅关于尿酸氧化酶、黄嘌呤脱氢酶及枯草芽孢杆菌中基因表达等的相关文献,并对枯草芽孢杆菌基因操作有全面了解。
(2)文献阅读及综述:阅读与课题相关的中英文文献,了解国内外的研究动态,撰写文献综述。
(3)明确实验任务,拟定实验方案:根据所查阅文献的内容,确定研究内容及方案,拟定科学可行的研究计划。
2. 参考文献
[1] Li W, Xu S, Zhang B, et al. Directed evolution to improve the catalytic efficiency of urate oxidase from Bacillus subtilis[J]. PloS one, 2017, 12(5): e0177877. [2] Ma P, Patching S G, Ivanova E, et al. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity[J]. Microbiology, 2016, 162(5): 823-836. [3] Khade S, Srivastava S K. Effect of surfactants and inducers on increased uricase production under submerged fermentations by Bacillus cereus[J]. Preparative Biochemistry and Biotechnology, 2017, 47(1): 81-85. [4] Kotb E. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes[J]. Biologia, 2016, 71(3): 229-238. [5] Feng T, Yang X, Wang D, et al. A practical system for high-throughput screening of mutants of bacillus fastidiosus uricase[J]. Applied biochemistry and biotechnology, 2017, 181(2): 667-681. [6] Chen M H, Chen S J, Hsu H Y, et al. Method of reducing levels of uric acid: U.S. Patent 9,441,210[P]. 2016-9-13. [7] Chityala S, Dasu V V, Ahmad J, et al. High yield expression of novel glutaminase free L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N[J]. Bioprocess and biosystems engineering, 2015, 38(11): 2271-2284. [8] Wei W, Ma J, Guo S, et al. A type I pullulanase of Bacillus cereus Nws-bc5 screening from stinky tofu brine: functional expression in Escherichia coli and Bacillus subtilis and enzyme characterization[J]. Process Biochemistry, 2014, 49(11): 1893-1902. [9] Wu L, Wu S, Qiu J, et al. Green synthesis of isomaltulose from cane molasses by Bacillus subtilis WB800-pHA01-palI in a biologic membrane reactor[J]. Food Chemistry, 2017, 229: 761-768. [10] Chen J, Gai Y, Fu G, et al. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein[J]. Biotechnology letters, 2015, 37(4): 899-906. [11] Chen J, Fu G, Gai Y, et al. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression[J]. Microbial cell factories, 2015, 14(1): 92. [12] Ho H T, Nguyen H T. Optimization of Bacillus Subtilis Natto Immobilization Process on Alginate-Chitosan Complex and Its Application for Nattokinase Fermentation[J]. International Journal of Pharmaceutical Science Invention, 2016, 30. [13] Nie G, Liu N, Zhang E, et al. Preparation of a novel mixed milk with nattokinase produced by Bacillus subtilis (natto)[J]. Journal of Food Processing and Preservation, 2017. [14] Suwanmanon K, Hsieh P C. Isolating Bacillus subtilis and optimizing its fermentative medium for GABA and nattokinase production[J]. CyTA-Journal of Food, 2014, 12(3): 282-290. [15] Wei X, Zhou Y, Chen J, et al. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization[J]. Journal of industrial microbiology biotechnology, 2015, 42(2): 287-295. [16] Dabbagh F, Negahdaripour M, Berenjian A, et al. Nattokinase: production and application[J]. Applied microbiology and biotechnology, 2014, 98(22): 9199-9206. [17] Cai D, Wei X, Qiu Y, et al. High‐level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase[J]. Journal of applied microbiology, 2016, 121(3): 704-712. [18] Jhan J K, Chang W F, Wang P M, et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus[J]. LWT-food science and technology, 2015, 63(2): 1281-1287. [19] Kitagawa M, Shiraishi T, Yamamoto S, et al. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains[J]. AMB Express, 2017, 7(1): 127. [20] Weng M, Deng X, Bao W, et al. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J]. Biochemical and biophysical research communications, 2015, 465(3): 580-586. [21] #214;zt#252;rk S, #199;al#305;k P, #214;zdamar T H. Fed-batch biomolecule production by Bacillus subtilis: A state of the art review[J]. Trends in biotechnology, 2016, 34(4): 329-345. [22] Shiu Y L, Wong S L, Guei W C, et al. Increase in the plant protein ratio in the diet of white shrimp, Litopenaeus vannamei (Boone), using Bacillus subtilis E20‐fermented soybean meal as a replacement[J]. Aquaculture Research, 2015, 46(2): 382-394. [23] Cai D, Zhu C, Chen S. Microbial production of nattokinase: current progress, challenge and prospect[J]. World Journal of Microbiology and Biotechnology, 2017, 33(5): 84. [24] Guan C, Cui W, Cheng J, et al. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis[J]. Microbial cell factories, 2016, 15(1): 66. [25] Kapoor R, Harde H, Jain S, et al. Downstream processing, formulation development and antithrombotic evaluation of microbial nattokinase[J]. Journal of biomedical nanotechnology, 2015, 11(7): 1213-1224. [26] Borriss R, Danchin A, Harwood C R, et al. Bacillus subtilis, the model Gram‐positive bacterium: 20 years of annotation refinement[J]. Microbial biotechnology, 2018, 11(1): 3-17. [27] Yogesh D, Halami P M. Fibrinolytic enzymes of Bacillus spp.: an overview[J]. International Food Research Journal, 2017, 24(1). [28] Bi H, Zhao H, Lu F, et al. Improvement of the Nutritional Quality and Fibrinolytic Enzyme Activity of Soybean Meal by Fermentation of Bacillus subtilis[J]. Journal of food processing and preservation, 2015, 39(6): 1235-1242. [29] Ayala F R, Bauman C, Cogliati S, et al. Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity[J]. Microbial Cell, 2017, 4(4): 133. [30] Ma Y, Shen W, Chen X, et al. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization[J]. Journal of biological engineering, 2016, 10(1): 13. [31] Cai D, Wang H, He P, et al. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis[J]. Microbial cell factories, 2017, 16(1): 70. [32] Cheng A C, Lin H L, Shiu Y L, et al. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture[J]. Fish Shellfish Immunology, 2017. [33] Mohkam M, Nezafat N, Berenjian A, et al. Role of Bacillus Genus in the Production of Value-Added Compounds[M]//Bacilli and Agrobiotechnology. Springer International Publishing, 2016: 1-33.
3. 毕业设计(论文)进程安排
2018.1-2018.2 熟悉实验原理和实验操作,查阅文献,对课题进行初步探索。
2018.3-2018.4 查找尿酸氧化酶与黄嘌呤脱氢酶编码基因序列,通过基因工程的技术手段,构建重组质粒,将其转化到枯草芽孢杆菌中表达。
对培养温度、诱导时机、诱导剂浓度、诱导表达时间等因素进行分析,确定最佳产酶条件。