登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 化学化工与生命科学类 > 制药工程 > 正文

生物电化学去除电镀废水重金属的研究毕业论文

 2022-04-04 22:15:37  

论文总字数:23335字

摘 要

如今,由于人类无节制地消耗能源导致了全球性能源危机,同时为了降低生产成本胡乱排放废弃污染物,伴随而来的是各种环境问题。在这种情况下,寻找可再生的环境友好型能源利用技术刻不容缓。微生物燃料电池(Microbial fuel cell, MFC)作为一种交叉学科,涉及多个领域,诸如电化学、生物学及环境学等,MFC能够将化学能转换为电能,是符合我们所需可再生及环境友好的条件的新型电化学反应装置。MFC因其所具有的优势,现已成为一个重要的研究课题。

工业作为社会的支柱产业,也造成了大量的污染。金属冶炼、电镀、石油化工都会产生大量含重金属废水,直接排放会造成极大的危害又浪费资源。传统重金属废水处理方法有反渗透法、还原沉淀法、絮凝法和生物吸附法等,然而这些方法都较难实现重金属的回收,还会有产生二次污染的可能。电化学法即便具有操作简便、二次污染少及效果显著的优点,但系统需要高能耗的支持。微生物燃料电池在处理含重金属废水上的应用,可以实现废水处理、重金属回收和产生电能三种目的。并且,MFC绿色环保、操作容易控制,所需原料来源也十分广泛。

本研究通过构建双室MFC反应器,对电镀废水进行处理。在阳极室加入电镀污泥,对其中所含的杂菌进行驯化,几个周期后将挂好膜的阳极石墨毡作为生物阴极,用其来还原电镀废水中的重金属离子。我们每隔2小时对阴极液取样,测定样品吸光度,计算每个时间点溶液中Cr(VI)的浓度。除电镀污泥外,本实验还构建了加入生活污泥和池塘污泥作为杂菌来源的MFC,在相同反应条件和程序下,对比不同微生物来源的生物阴极对重金属和产电机能的差异。

在挂膜实验过程中,生活污泥的反应器最高输出功率密度达到了238.05mW/㎡,池塘污泥最高为169.744 mW/㎡,电镀污泥为40.196 mW/㎡。在铬去除实验中,三种反应器对Cr(VI)的去除率最高分别达到了52.63%、55.25、62.82%。

关键词:微生物燃料电池(MFC),生物阴极,重金属,输出功率密度

Removal of heavy metals from electroplating wastewater by Bioelectrochemistry

Abstract

Nowadays, people consume the energy without control. At the same time, some people pollute the environment by waste pollutants in order to reduce the cost value. These bring many kinds of environmental issues. In such a situation, it is urgent to find a renewable and environmentally friendly energy utilization technology. Microbial fuel cell (MFC) is a cross discipline, contains multiple fields electrochemical and biological and Environmental Sciences. MFC can convert chemical energy into electrical energy, it is in line with the renewable and environmentally friendly conditions of novel electrochemical reaction device that we need. MFC has become an important research topic because of its advantages.

Industry not only be known as a pillar industry of society, but also caused a lot of pollution. Metal smelting, electroplating, petroleum and chemical industry will produce a large number of heavy metal containing wastewater, direct discharge will cause great harm and waste of resources. Traditional treatment methods of heavy metal wastewater such as reverse osmosis, reduction precipitation, flocculation and biological adsorption, etc, but these methods are difficult to achieve heavy metal recovery, and also have the possibility of secondary pollution. Electrochemical method has the advantages of simple operation, less pollution and obvious effect, but the system needs the support of high energy consumption. Microbial fuel cells in the treatment of wastewater containing heavy metal applications, can be achieved in the treatment of wastewater, recycling of heavy metals and produce three kinds of purposes. And, MFC has the advantages of green environmental protection, easy to control, the source of raw materials is also very wide.

In our study, a dual chamber MFC reactor was constructed to deal with electroplating wastewater. The sludge was added in the anode chamber, and the mixed bacteria were domesticated. After several cycles, the anode of the membrane was used as the cathode, and the heavy metal ions in the electroplating wastewater were reduced by graphite felt. We sampled the cathode solution for every 2 hours, and the absorbance of the sample was measured, and the concentration of Cr (VI) in each time point was calculated. In addition to the electroplating sludge. Our experiment also constructed of sewage sludge and pond sludge as miscellaneous bacteria source, under the same conditions and procedures, comparison of different microbial source bio cathode of heavy metals and electricity generation performance differences.

In biofilm forming process and life sludge reactor at the maximum output power density reached 238.05 mW/㎡, pond sludge was the highest 169.744 mW/㎡, the electroplating sludge for 40.196 mW/㎡. In the chromium removal experiment, the removal rate of Cr (VI) was 52.63%, 55.25 and 62.82%, respectively.
Key words: microbial fuel cell (MFC), biocathode, heavy metals, the output voltage

目 录

Abstract II

第一章.文献综述 1

1.1研究背景 1

1.2 电镀废水处理现状 2

1.2.1 化学法 2

1.3 微生物燃料电池技术 2

1.3.1 微生物燃料电池发展历程 2

1.3.2 MFC运行原理 3

1.3.3 生物阴极燃料电池 4

1.3.3.1 好氧生物阴极 4

1.3.3.2 厌氧生物阴极 5

1.4 MFC生物阴极的优势与不足 5

1.5 本课题研究内容,目的及意义 6

1.5.1 本课题研究目的及意义 6

1.5.2 本课题的主要研究内容 6

第二章 实验材料与方法 7

2.1实验材料 7

2.1.1主要试剂及仪器 7

2.1.2实验装置 8

2.2实验方法 8

2.2.1 MFC的接种及启动运行 8

2.2.2 MFC运行条件 9

2.2.3 测定指标及方法 9

2.2.4 实验材料处理方法 10

2.2.5实验内容 10

第三章 结果与讨论 11

3.1 各周期输出电压的情况 11

3.1.1 挂膜实验阶段 11

3.1.2 铬去除实验阶段 14

3.2 各周期铬浓度的变化 15

3.2.1 第一次去除实验结果 15

3.2.2 第二次去除实验结果 16

3.2.3 第三次去除实验结果 17

3.2.4 第四次铬去除实验 18

3.2.5 第五次铬去除实验 20

3.2.6 第六次铬去除实验 20

第四章 结论与展望 22

4.1结论 22

4.2 展望 23

参考文献 24

请支付后下载全文,论文总字数:23335字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图