强风作用下大跨度桥梁随机振动毕业论文
2021-10-25 21:00:52
摘 要
近些年来,大跨度桥梁建设数量逐年增多,跨径也不断增大,桥梁结构也随之更加轻柔。正是由于这种特点,在跨径屡创新高的同时,大跨径桥梁在强风作用下的风致振动问题也越来越突出,控制不当甚至可能引起灾难性的后果。风荷载本质上是一种随机荷载,桥梁在受到风荷载产生的振动是一种随机振动。因此,研究大跨度桥梁在随机风荷载作用下的动力响应具有重要意义。
本文选择西固黄河大桥作为研究背景,对风荷载作用下该桥的抖振响应进行了分析。首先建立了西固桥的有限元力学模型,在模型建立过程中进行了一定的简化,将结合梁进行了等效处理,并用等效弹性模量对斜拉索进行了修正,然后进行了静态分析和模态分析来验证所建模型的合理性。接着选取桥址处的风速,功率谱密度函数等参数,并用谐波合成法对脉动风进行了数值模拟,得到了10组样本,再用Davenport提出的准定常抖振力模型计算抖振力,将静风荷载与抖振力叠加施加到模型上分析主梁的抖振响应。最后运用“”法则对该桥时域内主梁抖振响应概率特性进行了分析,得到了西固桥主梁动力响应参数的上下限值,可以概括得到以下结论:
(1) 在风荷载作用下,该桥会产生剧烈的动力响应,会引起结构疲劳,影响桥梁耐久性和行车安全。因此有必要采取可靠措施来抑制桥梁的振动响应。
(2) 只要桥位处脉动风速的时程样本足够多,就可以用“”法则得到主梁位移、速度、加速度每个时间步的上下限值,为指导大跨度斜拉桥的抗风设计提供参考。
关键词:大跨度斜拉桥;ANSYS建模;抖振响应;脉动风场模拟;桥梁抗风。
Abstract
In recent years, the number of long-span bridge constructions has increased year by year, the spans have also increased, and the bridge structure has become softer. It is precisely because of this feature that the wind-induced vibration problems of large-span bridges under strong winds are becoming more and more prominent at the same time that the spans have reached new heights. Improper control may even cause catastrophic consequences. The wind load is essentially a random load, and the vibration of the bridge caused by the wind load is a random vibration. Therefore, it is of great significance to study the dynamic response of long-span bridges under random wind loads.
In this paper, the Xigu Yellow River Bridge is selected as the research background, and the buffeting response of the bridge under wind load is analyzed. First, the ANSYS finite element mechanical model of Xigu Bridge was established. During the model building process, certain simplifications were made. The combined beams were treated equivalently, and the cable stays were modified with equivalent elastic modulus. Static analysis and modal analysis to verify the rationality of the built model. Then select the wind speed at the bridge site, power spectral density function and other parameters, and use the harmonic synthesis method to simulate the pulsating wind, get 10 sets of samples, and then use the quasi-stationary buffeting force model proposed by Davenport to calculate the buffeting force. The static wind load and buffeting force are superimposed on the model to analyze the buffeting response of the main beam. Finally, the “” rule is used to analyze the probabilistic characteristics of buffeting response of the main beam in the time domain of the bridge, and the upper and lower limits of the dynamic response parameters of the main beam of the Xigu Bridge are obtained. The following conclusions can be summarized:
(1) Under the action of wind load, the bridge will produce a violent dynamic response, which will cause structural fatigue and affect the durability and driving safety of the bridge. Therefore, it is necessary to take reliable measures to suppress the vibration response of the bridge.
(2) As long as there are enough time-history samples of the pulsating wind speed at the bridge location, the upper and lower limits of each time step of the main beam displacement, velocity, and acceleration can be obtained by the "" law, which is used to guide the wind resistance design of the long-span cable-stayed bridge for reference.
Keywords: long-span cable-stayed bridge; ANSYS modeling; buffeting response; pulsating wind field simulation; bridge wind resistance.
目 录
第1章 绪论 1
1.1 斜拉桥简要发展过程 1
1.1.1 概述 1
1.1.2 发展简介 1
1.1.3 斜拉桥发展展望 2
1.2 桥梁风工程简介 2
1.3 本文研究内容 3
第2章 风环境与风荷载 4
2.1 风环境 4
2.1.1 平均风特性 4
2.1.2 脉动风特性 5
2.2 静风荷载 7
2.2.1 风荷载的三分力 7
2.2.2 静力三分力系数 8
2.3 抖振 8
2.3.1 准定常抖振力模型 9
2.3.2 抖振力模型修正 10
2.4 本章小结 10
第3章 西固桥ANSYS模型建立 11
3.1 概述 11
3.2模型建立 12
3.2.1 主梁单元 12
3.2.2 斜拉索 13
3.2.3 主塔、桥墩 14
3.2.4 边界条件 14
3.2.5 ANSYS建模流程 14
3.3 模型验证 15
3.3.1 静力分析 15
3.3.2 模态分析 16
3.4 本章小结 16
第4章 脉动风场数值模拟结果和风荷载计算 17
4.1 生成脉动风速功率谱 17
4.2 脉动风场模拟原则 18
4.3 脉动风场数值模拟结果 19
4.4 风荷载计算与时程风荷载施加 22
4.4.1 静风荷载 22
4.4.2 脉动风抖振力 23
4.4.3 对模型施加风荷载 25
4.5 本章小结 26
第5章 抖振响应分析 27
5.1 ANSYS求解振动微分方程原理 27
5.2 跨中30号节点动力参数提取 27
5.3 时域内抖振响应概率特性分析 30
5.4 本章小结 33
第6章 结论 35
6.1 结论 35
6.2 不足之处 35
参考文献 36
附录 37
致谢 47
第1章 绪论
1.1 斜拉桥简要发展过程
1.1.1 概述
斜拉桥历史悠久,它起源于吊索桥。作为大跨度桥梁主要形式之一的斜拉桥,受力特点良好,所以比普通梁桥在跨越能力方面有更好表现。它由梁、斜拉索、桥塔三部分组成,斜拉索将主梁与桥塔连到一起,斜拉索承受拉力,桥塔支撑整个桥梁的结构,主要承受压力,主梁主要承受轴力和弯矩。
1.1.2 发展简介
在很早之前人们就掌握了从塔架上悬吊斜拉索来支撑梁的知识[1]。资料表明,斜拉桥最早起源于东南亚一带。在该地区气候非常适合植物生长,因此生长了很多藤竹,为斜拉桥的出现创造了条件,当地居民用藤竹为材料建造了许多最原始的斜拉桥。自1617年开始,欧洲地区也出现了斜拉桥,在1784年, 德国人C.J Loscher建造了一座跨径32m的木桥,是世界上第一座斜拉桥。由于当时的理论研究还不够成熟、高强钢材还不能被大量冶炼制造、对斜拉桥的结构体系还缺乏深刻的认识等原因,陆续有建好的斜拉桥出现坍塌等事故,影响了其发展。研究斜拉桥的工程师开始将精力投入到研究悬索桥,斜拉桥发展停滞。
二战之后,桥梁重建规模浩大,电子计算机的问世和工业水平的飞速发展,给斜拉桥的发展带来了新的机遇。电子计算机可以快速计算高次超静定结构,而工业水平的发展使高强钢材大量用于桥梁建设成为可能。