基于单片机的气压检测仪器外文翻译资料
2022-11-24 15:01:30
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
D. Hazarika, D.S. Pegu
Electrical Engineering Department, Assam Engineering College, Assam, India
Received 24 March 2012
Revised 10 October 2012
Available online 20 December 2012
Abstract:
This paper describes a micro-controller based instrumentation system to monitor air pressure using opti-cal fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins.
The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
Crown Copyright 2012 Published by Elsevier Inc. All rights reserved.
1.Introduction
Fiber optic sensor has been a major user of technology associ-ated with opto-electronics and fiber optical communication [1–3] . Many of the components associated with these industries were often developed for fiber optic sensor applications. They are widely used for the detection of temperature [4–8,18,19], pressure/strain [9,10] , displacement [11] , rotation and angular position [12] , liquid level [13] , electric and magnetic field measurement, acoustics, vibration [14] , acceleration [15] , linear, curvature measurement [16] and host of other applications. It is due to the fact that fiber optic sensors offer unique advantages, such as immunity to elec-tor-magnetic interferences, stability, repeatability, durability against harsh environment and fast response. Being a programmable device, microcontroller offers enormous flexibility and opportunity to researchers to investigate and devel-op sensor based system according to their convenience and appli-cation. An electronic microcontroller-based system for high-pressure measurement using a fiber-optic sensor has been pro-posed [18] . A digital microcontroller based transducer has been proposed for liquid-level measurement, it uses two optical fibers,from which the cladding was removed in suitably spaced zones at known distances [19] . A multifiber temperature sensor, based on the relationship between temperature and the refractive index using the microcontroller-based hardware has been proposed[20] .A PIC16F877 8-bit microcontroller based displacement measuring system based on one optical emitter (laser diode) has been described [21] . An ATMega163L based instrumentation system has been proposed for the monitoring of environmental parameters using hydrogen sensor and microelectro mechanical system (MEMS) [22] . Two microcontrollers are used to measure turbid water sample using the principle of interaction among the incident, absorbed and scattered light by the turbid water sample.The resultant light produced after the interaction has been collected by plastic optical fiber located at 180°(transmittance measurement technique) and 90°(90° scattering measurement technique) from the incident light [23] . The effect of intensity modulation and the micro-bending technique have been investigated for remote measurement of strain/stress. For this purpose, a microcontroller has been used for processing the single input from a sensor fiber, and display the output over a LCD [24] . A system has been described to evaluate accurate illuminance and luminous emittance, which is equivalent with measurement of luminous powerper unit area[25] . AVR Atmega128 microcontroller has been used to implement the scheme, which realizes the majority of the processing functions, including the signal conditioning from the optical sensor.The paper describes a micro-controller based optical fiber pressure sensor system consisting a He–Ne laser source, a beam splitter, two multi-mode optical fibers, two LDR based timer circuits and micro-controller AT89S8252. The beam splitter is used to divide the laser beam into two parts that are than launched into the pressure sensing and reference fibers respectively. The inten-sity of the laser beam from sensor fiber changes according to the change in air pressure and as well as the change in environmental condition around the sensor system. Whereas, the intensity of the laser beam from reference fiber changes according to the change in environmental condition around it. These two beams are applied to two identical LRD based timer circuits. The outputs of the timer cir-cuits are fed to the T0 and T1 of AT89S8252 micro-controller (coun-ter pins) to sample the frequencies of the timer circuits for a fixed time and using these sampled data, air pressure magnitude is determined by eliminating the environmental effect associated with the measurement. The advantage of the scheme is that it di-rectly converts the air pressure measurement into a 16 bits digital word using simple interfacing timer circuits.
2.Description of sensor unit
The Fig. 1 shows the sensor unit developed for detecting air pressure magnitude. It consists of two multi mode optical fibers: one is used for detecting the change in pressure and termed as“sensor fiber”and other one is called “reference fiber” which is used for the purpose of rectifying environmental effect from pressure mea
剩余内容已隐藏,支付完成后下载完整资料
基于单片机的气压检测仪器
D. Hazarika, D.S. Pegu
Electrical Engineering Department, Assam Engineering College, Assam, India
Received 24 March 2012
Revised 10 October 2012
Available online 20 December 2012
简介:
本文介绍了基于单片机的气压检测仪器系统,使用光纤传感器监测气压。仪器系统由激光源,分束器,两个多模光纤,两个基于光依赖电阻(LDR)组成的定时器电路和一个AT89S8252单片机组成。分束器用于将激光束分成两部分,然后将这两个光束发射到两个多模光纤中。多模光纤中的一个用作传感器光纤,另一个用作参考光纤。参考光钎的使用用于测量空气压力大小时消除环境影响。来自传感器和参考光纤的激光束被应用于两个相同的基于LDR的定时器电路。基于LDR的定时器电路通过引脚与单片机连接。
单片机使用其值0或-1对定时器电路的频率进行采样,然后处理计数器数值以提供气压幅度的量度。
一.简介
光纤传感器一直用于与光电子和光纤通信相关技术方面[1-3]。许多与这些行业相关的组件通常使用光纤传感器。它们广泛用于检测温度[4-8,18,19],压力/应变[9,10],位移[11],旋转和角位置[12],液位[13],电磁场测量,声学,振动[14],加速度[15],线性,曲率测量[16]以及其他应用的主机。这是因为光纤传感器具有独特的优点:例如电磁干扰的抗扰度,稳定性,重复性,耐恶劣环境的耐久性和快速响应。作为可编程器件,单片机为研究人员提供了巨大的灵活性和机会,以便根据其方便和应用来调查和开发基于传感器的系统。用一种基于电子单片机的系统进行光纤传感器的高压测量[18]。用一种基于数字单片机的传感器进行液位测量,它使用两根光纤,在已知距离处的适当间隔的区域中从中去除了包层[19]。用一种基于单片机的硬件进行计算温度和折射率之间的关系 [20]。用一种基于8位单片机的测量系统进行位移测量[21]。用基于ATMega163L的仪器仪表系统进行监测环境参数[22]。使用两个单片机,通过混浊水样品的入射,吸收和散射光之间的相互作用原理来测量混浊水样品。相互作用后产生的光被位于180°的塑料光纤(透射率测量技术)和90°(90°散射测量技术)推测入射光[23]。为此,单片机已被用于处理来自传感器光纤的单个输入,并通过LCD显示输出[24]。描述了一种系统来评估准确的照度和发光度,这与发光单元面积的测量相当[25]。 AVR Atmega128单片机已被用于实现该方案,其实现了大部分处理功能,包括来自光学传感器的信号调理。本文介绍了一种基于单片机的光纤压力传感器系统,包括He-Ne激光源,一个分束器,两个多模光纤,两个基于LDR的定时器电路和单片机AT89S8252。分束器用于将激光束分成两部分,分别被发射到压力感测和参考光纤中。来自传感器光纤的激光束的强度根据气压的变化以及传感器系统周围的环境变化而变化,来自参考光纤的激光束的强度根据周围环境条件的变化而变化。这两个光束被应用于两个相同的基于LRD的定时器电路。定时器电路的输出被馈送到AT89S8252单片机(国际引脚)的T0和T1,以便在固定时间内对定时器电路的频率进行采样,并使用这些采样数据,气压幅度可以消除与测量相关的环境影响。该方案的优点是使用简单的接口定时器电路将空气压力测量值直接转换为16位数字。
图1.传感器单元说明图
图1示出了用于检测气压大小的传感器单元,它由两个多模光纤组成:一个用于检测压力变化,称为“传感器光纤”,另一个称为“参考光纤”,用于整流压力测量的环境影响。使用厚的塑料基板为传感器单元的不同部件提供结构支撑。“传感器光纤”用于创建如图1所示的两个回路。塑料基板中的弹簧用于为这些“传感器纤维”环提供结构支撑。这两个回路产生传感器光纤的四个曲率。围绕这些曲率,传感器光纤的包层被部分(略微)去除,以使传感器更加敏感。四个支撑柱用于向具有横截面积(A)等于(1.0cm 2)的薄电木板提供支撑和自由运动0.2cm 2)。空气压力被施加到这个薄的前胶木板上。四个薄弹簧放置在支撑柱周围。这些弹簧的功能是(i)确保弹性,(ii)增强压力测量能力或范围,(iii)使传感器单元有更好的反射作用, “参考光纤”也给出了塑料基板中使用两个的形状。这是为了确保“传感器光纤”和“参考光纤”的长度大致相等,所以在无压力条件下,来自两根纤维的激光束的强度保持大致相同。
3. 传感器单元的操作原理
多模式“传感器光纤”的两个环的配置形成四个曲率,环高2.0厘米。这些曲率可以被视为具有半径R的四个半圆弧。
当将激光束施加到“传感器光纤”时,与光纤的半圆弧的外径相关联的模式必须比在光纤的半圆弧的内侧上更快地保持波前,垂直于传播方向。这导致与“传感器光纤”的外径模式相关的能量的辐射(损耗)。与弯曲多模光纤的曲率半径相关的辐射衰减/吸收系数表示为[17, p. 336]: alpha;beta;=CɛR/Rc(1) 其中C是常数,R是光纤的弯曲曲率半径,Rc=a/,a是纤维的半径,n1是芯的折射率,n2是包层的折射率。
Rc被称为多模光纤的临界曲率半径[17],即当弯曲光纤的曲率半径表示该值时,发生非常大的弯曲损耗。当空气压力施加到薄前面的面板,由“传感器纤维”形成的薄弹簧和两个环由于它们的组合弹性效应而提供阻力。因此,薄胶木板的位移程度取决于其经历的空气压力的大小。薄面板的位移将引起“传感器纤维”的半圆弧的额外的弯曲。这将导致半圆弧的曲率半径(△ R)的变化。 “传感器纤维”半圆弧曲率变化引起的衰减系数的变化可以表示为: △alpha;beta;=Cɛ△R/Rc (2)因此,激光束的强度变化由“具有四个半圆弧的“传感器光纤”将为△Ibeta;=4△alpha;beta;IRO (3)IRO是“传感器光纤”的激光束在没有任何空气压力下的强度,可以视为常数。另外,来自“传感器光纤”的激光束的强度变化与施加在胶木板上的压力(P)的大小成比例。因此,Pasymp;△IB (4) 。因此,对于等式(3)和(4),我们有Pasymp;4△alpha;beta;IRO=4KP△alpha;beta;IRO (5)。
其中Kp是比例常数, 式(5)表明,空气压力的任何变化都会引起与弯曲多模光学“传感器光纤”的曲率半径相关的辐射衰减/吸收系数的变化。来自“传感器光纤”的激光束的强度将根据传感器单元所经历的空气压力的变化而改变。这种强度变化会改变定时器电路的LDR电阻。
4.仪表系统方案
图2 测量气压大小的电路图
图2示出了使用两个多模光纤测量空气压力幅度的方案。该方案由激光源,由两个多模光纤组成的传感器单元,两个基于LDR的定时器电路和单片机系统组成。分束器用于将激光束分成两部分,然后分别发射到传感器单元的“传感器光纤”和“参考光纤”中。来自“传感器光纤”和“参考光纤”的激光束被施加到两个相同定时器电路的LDR。
T0(单片机AT89S8252的计数器0的计数器引脚)连接到第一个基于LDR的定时器电路,其中来自“传感器光纤”的波束被施加,并且该定时器电路被称为“定时器电路传感器光纤”。而T1(单片机AT89S8252的counter-1的计数器引脚)与第二个基于LDR的定时器电路相连接,其中来自“参考光纤”的波束被施加,该定时器电路被称为“定时器电路与参考光纤”相关联。 AT89S8252单片机用于通过其T0和T1引脚固定定时器对定时器电路的频率进行采样。单片机系统的显示单元由16个2(即具有16个字符显示器的两行)LCD显示单元组成。 LCD单元配置为5 7点阵模式字符显示。单片机端口P0(P0.0-P0.7)用于将数据字节加载到LCD显示单元,P2.0-P2.3用于设置LCD显示单元的控制信号。开关(SW)连接到AT89S8252单片机的P1.1引脚,为系统的初始化提供便利。开关状态为“1”。
基于LDR的定时器电路的频率如图1所示,3由以下表达式给出:f= (6)。
其中,RL是LDR的基体电阻,是与无激光光纤或“参考光纤”对应的激光束的LDR的电阻,无环境效果条件。与传感器光纤相关联的“定时器电路”的电阻R1和电容C保持不变。
图 3定时器电路采用的IC 555
“传感器光纤”周围的空气压力和环境影响的变化将改变穿过它的激光束的强度。 而通过“参考光纤”的激光束的强度将仅受环境影响的改变。 这些条件下定时器电路的频率可以表示为:
f0=B △RE)]C (7)
f1=E)]C (8)
其中f0和f1分别是与“传感器光纤”和“参考光纤”相关联的定时器电路的频率。 △RE是由于宏观弯曲效应而与“传感器纤维”相关的LDR的电阻变化。然而,由于环境影响,LDRs与“传感器纤维”和“参考纤维”相关的LDR的电阻变化。
AT89S8252单片机系统通过其T0和T1引脚固定时间对定时器电路的频率进行采样。如果C0和C1是由单片机系统从T0和T1采样的计数值,则C0=f0Ts (9), C1=f1Ts (10)。其中Ts是采样时间。现在,减去方程(9)、(10),我们有△C =△C=C1-C0=Ts|f1-f0|=
Ts|B △RE)]C |(11)
对于定时器电路R1 nRL,式(11)可以忽略不计
因此(11)成为
△C=T S{0.7△RB/[(RL △RE)(RL △RE △RB)C]}
= TS{0.7△RB/[(R2L RL(△RB 2△RE) △RE△RB)C]}
△RE△RB的数值与上述表达式的其他数值相比可忽略不计。另外算式RL(△RB 2△RE)lt;lt;lt;R2L。因此,△C=0.7△RB T S/(C R2L) (12)式。 (12)表示AT89S8252的计数器1(C1)和计数器0(C0)之间的计数差仅取决于△RB,与“传感器光纤”相关的定时器电路的LDR电阻变化来源于空气压力的变化,即由于宏观弯曲效应。此外,(12)提供了选择基本情况LDR电阻(RL)和定时器电路的电容器C的电容的标准。要使设备灵敏,C R2Llt;1 (13).
在两个定时器电路中使用相同的LDR,当光束被遮挡产生完全黑暗时,LDR直接暴露于He-Ne激光光束的光束时,表现为1.5千欧欧(约)的电阻,显示为100千欧(约)。通过在传感器单元上施加压力来应用来自“传感器光纤”和“参考光纤”的激光来测量LDR的电阻。与“传感器光纤”相关的定时器电路中使用的LDR显示为6.01千欧。而与“参考光纤”相关的定时器电路中使用的LDR显示为6.007千欧。
发现在这种情况下,LDRs显示出相同的电阻。
将R1 = 1千欧,C = 0.002 lF,与“传感器光纤”相关的电路的基频为f=1.4/[(R1 2 RL)C]=1.4/13.02*103*0.002*10-6=53.76KHz (14)
其低于AT89S8252的计数器的最大容量(即十六进制中的FFFF = 65536),并且与定时器电路的这些参数相等。于是,(12)变成△C=0.7△RB T S/[0.002*10-6*(6.01*103)2 ]=9.69△RB T S (15)
它表明,当测量仪器系统的两个定时器电路之间的计数差时,由传感器单元所经历的压力变化引起的LDR电阻变化的影响被放大9.69倍。△RB与激光束(△IB)的强度变化是成比例的,激光束的强度变化与压力(P)成正比,计数
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[26427],资料为PDF文档或Word文档,PDF文档可免费转换为Word