基于BESO法的汽车零部件结构拓扑优化设计毕业论文
2021-11-07 21:09:24
摘 要
汽车轻量化设计是解决当前能源问题和有害排放问题的有效途径,目前比较热门的汽车零部件轻量化设计集中在拓扑优化这个话题。本文通过联合MATLAB软件和ANSYS软件,基于BESO法(双向渐进结构优化法),搭建以柔度最小为目标、以材料用量(体积分数)为约束的拓扑优化平台,利用该平台对汽车零部件进行拓扑优化设计。主要研究内容概述如下:
搭建二维拓扑优化平台,在ANSYS编写有限元模型建立和有限元分析程序,在MATLAB编写拓扑优化主程序。用二维简支梁对平台进行测试,使用商业软件Altair-Optistruct对二维简支梁进行拓扑优化,对比两个平台的优化结果,本平台的结果与商业软件的结果显示一致,且结构柔度更小,表明本平台在刚度优化问题上变现更出色。将拓扑优化平台从二维扩展到三维,利用三维简支梁对该平台进行测试,结果显示三维简支梁拓扑构型好、结构柔度值小,证明本文搭建的拓扑优化平台可以应用于三维拓扑优化问题。修改平台的程序,提高拓扑优化平台的效率,解决多工况下的拓扑优化问题。
选取汽车界比较典型的零件—赛车转向节进行拓扑优化设计。搭建赛车多体动力学模型,模拟赛车实际工况,提取转向节各硬点载荷。将转向节导入本平台进行拓扑优化设计,利用Catia软件对拓扑结果进行重构,得到转向节初始模型,利用ANSYS软件对初始模型进行有限元分析,并根据分析结果对初始模型进行局部优化处理,得到最终设计的赛车转向节。该转向节与传统经验法设计的转向节对比,质量减轻41.36%,最大变形减小8.55%。本拓扑优化平台设计的赛车转向节在轻量化和刚度方面设计效果较佳,实现了BESO法在工程领域的简单应用。
关键词:转向节;拓扑优化;BESO法;ANSYS;MATLAB
Abstract
The lightweight design of automobiles can solve the energy problems and harmful emissions effectively in the current. At present, the more popular lightweight design of automobile parts focuses on the topic of topology optimization. This work is dedicated to the combination of MATLAB and ANSYS, and building a software platform of topology optimization based on BESO method (Bi-directional Evolutionary Structural Optimization). the optimization goal is to minimize compliance, and the constraint function is the volumefrac of structure. The automobile parts are designed by this software platform of topology optimization. The main content is summarized as follows:
The two-dimensional software platform of topology optimization is built by ANSYS and MATLAB. The programs which is about the Finite element modeling and finite element analysis are written in ANSYS software, and The main programs of topology optimization are written in MATLAB software. the software platform is tested with two-dimensional MBB beam. It is used to design the two-dimensional MBB beam by the Commercial software Altair-Optistruct. The results of this software platform are consistent with those of commercial software, and the compliance of the structure is smaller. The results show that the software platform is better in stiffness design. The software platform of topology optimization is expanded from 2D to 3D, and it is tested with a three-dimensional MBB beam. The results show that the three-dimensional MBB beam has a good topology configuration and small structural compliance, which proves that the software platform of topology optimization can be applied to 3D Topology optimization problems. We improve the efficiency of the software platform and design automobile parts under several conditions by modifying programs of the software platform.
The racing car steering knuckle, a typical part in the automobile industry, is selected for topological optimization design. The multi-body dynamics model of racing car is built to simulate the actual working condition of racing car, and get the hard points’ loads of the knuckles. The steering knuckle is imported into this platform for topological optimization design, and obtain the initial steering knuckle in Catia based on the result. Perform finite element analysis of the initial steering knuckle in ANSYS, and there is local optimization of the initial model according the analysis result. At last, getting the final design of the racing car steering knuckle. Compared with the knuckle designed by traditional empirical method, the quality of this knuckle is reduced by 41.36%, and the maximum deformation is reduced by 8.55%. The racing car steering knuckle designed by this platform of topological optimization is better in lightweight design and stiffness design, and at the same time the simple application of the BESO method in the engineering field is realized.
Key Words:Steering knuckle; Topology optimization; BESO method; ANSYS; MATLAB
目 录
第1章 绪论 1
1.1 研究背景及意义 1
1.2 国内外研究现状 2
1.2.1 拓扑优化汽车领域应用 2
1.2.2 拓扑优化技术的发展 4
1.2.3 拓扑优化商业软件 4
1.3 主要内容和技术方案 5
1.4 全文其它内容 6
第2章 BESO算法综述 8
2.1 刚度最大化设计BESO法数学模型 8
2.2 灵敏度平滑处理 9
2.2.1 网格依赖性和结果不收敛性 9
2.2.2 过滤器及敏度修正 10
2.3 BESO法设计变量更新 10
2.4 收敛准则 11
2.5 本章小结 11
第3章 BESO法拓扑优化平台搭建 12
3.1 二维拓扑优化平台搭建 12
3.1.1 有限元模型建立(ANSYS) 12
3.1.2 有限元分析计算(ANSYS) 13
3.1.3 拓扑优化主程序(MATLAB) 13
3.1.4 二维拓扑优化平台算例测试 15
3.2 三维拓扑优化平台 17
3.2.1 ANSYS程序代码更改 17
3.2.2 MATLAB程序更改 17
3.2.3 三维拓扑优化平台算例测试 18
3.3 提高平台求解效率 20
3.4 多工况拓扑优化平台 20
3.4.1 ANSYS程序更改 21
3.4.2 MATLAB程序更改 21
3.5 本章小结 21
第4章 汽车零部件拓扑优化 22
4.1 赛车转向节 22
4.1.1 载荷提取 22
4.1.2 有限元模型 24
4.1.3 材料属性 25
4.1.4 平台拓扑优化设计 25
4.1.5 模型重构 26
4.2 有限元分析及其验证 29
4.3 经验法设计对比分析 30
4.4 Altair-Optistruct拓扑优化对比分析 32
4.5 本章小结 34
第5章 总结与展望 35
参考文献 36
附录A(ANSYS有限元模型建立) 38
附录B(ANSYS有限元求解计算) 41
附录C(MATLAB主程序) 44
附录C1(各参数初始化) 44
附录C2(模型前处理) 44
附录C3(过滤前期准备) 44
附录C4(迭代更新循环) 45
附录C4.1(第一部分) 45
附录C4.2(第二部分) 45
附录C4.3(第三部分) 45
附录C4.4(第四部分) 45
附录C4.5(第五部分) 46
附录C5(提高平台效率) 46
致 谢 48
第1章 绪论
1.1 研究背景及意义
随着国家经济和社会的迅速发展,我国汽车保有量直线增长,目前我国汽车保有量已经达到2.65亿,国家商务部表示,中国汽车保有量有望在2020年底超越美国,成为世界上汽车保有量最多的国家。汽车在给我们带来巨大便利的交通出行时,同时也给环境压力、能源压力带来了巨大的挑战。目前在汽车工业的发展中,节能和环保仍然是汽车工业发展的重要方向,为解决能源和环境这两个世界难题,近年来提出的“低能耗”、“低排放”甚至“零排放”,都是汽车行业乃至整个世界的发展目标。
汽车轻量化设计是传统汽车节能减排的重要途径,研究表明,汽车60%的燃油消耗来自于本身的重量,当汽车自重降低10%,汽车的燃油消耗可降低7%左右。目前在新能源汽车领域,由于电池技术一直没有得到有效的突破,汽车轻量化也是提升新能源汽车续驶里程、降低能源消耗有效途径。国家已经将“轻量化”列为未来五年的发展战略,《中国制造2025》也强调“轻量化”是未来汽车发展的重中之重,目前,越来越多的研究机构和车企都在重点研究汽车轻量化。