电厂脱硫塔后烟气再热器的设计毕业论文
2020-07-15 21:09:45
摘 要
随着经济的发展我国能耗也急剧增加,目前电厂主要的燃料为煤炭。因此加剧环境的污染,所以烟气脱硫技术以及烟气再热器的研发和使用较为普遍。此次设计是电厂脱硫塔后烟气再热器的设计,国内外常见的脱硫法中燃烧后脱硫(烟气脱硫)最为普遍。[其中石灰石/石灰-石膏法最为成熟,应用最多,运行状况最稳定的方法,其脱硫效率在95%以上][1]。可是脱硫之后出来的烟气往往不能够达到设计的排放温度,对烟道和烟囱的腐蚀,耗能,结垢,耗水量,如果污垢现象严重的话还降低脱硫装置投运率,增加维护检修费用等不良影响加剧。我这次的设计是通过从任务书给出的烟气流量,水的流量等等,结合我国脱硫的技术状况设计烟气再热器。从设计数据来看的温度48℃不能满足要求,因此对脱硫塔后烟气进行升温处理,设计要求要达到75℃。升温装置采用管箱式换热器。
关键词:电厂脱硫 烟气再热器 管箱式换热器
Abstract
With the economic development, China's energy consumption has also increased dramatically. At present, the main fuel for power plants is coal. Therefore, the environmental pollution is aggravated, so the research, development and use of flue gas desulfurization technology and flue gas reheater are more common. This design is the design of the flue gas reheater after the desulfurization tower of the power plant. The common desulfurization method at home and abroad is the most common after-burning desulfurization (flue gas desulfurization). [The limestone/lime-gypsum method is the most mature, the most widely used, the most stable method of operation, the desulfurization efficiency is above 95%] [1]. However, the flue gas emitted after desulphurization is often unable to reach the designed discharge temperature, and the corrosion, energy consumption, fouling, and water consumption of the flue and chimney are reduced. If the fouling phenomenon is serious, the desulfurization equipment operation rate is also reduced, and the maintenance and repair costs are increased. Other adverse effects have intensified. My design this time is to design the flue gas reheater by combining the flue gas flow rate, water flow rate, etc. given in the task book with the technical conditions of China's desulphurization. From the design data, the temperature of 48°C cannot meet the requirements. Therefore, the temperature of the flue gas after the desulfurization tower should be raised to 75°C. The temperature raising device adopts a tube box heat exchanger.
Key words: Power plant desulfurizationFlue gas reheater
Pipe type heat exchanger
目录
摘要 I
Abstract II
第一章 绪论 1
第二章 烟气再热器的设计计算 3
2.1 原始设计工艺参数 3
2.2设计计算 3
2.2.1 热平衡计算 3
2.2.2 热力结构设计计算 4
2.2.3 阻力计算 7
第三章 管箱式换热器结构设计说明 9
第四章节能效益分析 10
4.1 10
4.2管箱式换热器增加的能耗 10
4.2.1引风机实际的能耗 10
4.2.2 冷凝水给水泵增加的能耗 10
4.2.3 控制系统增加的能耗 11
4.2.4增加总能耗 11
4.2.5设备维护费用分析 11
第五章结语及展望 12
致谢 13
参考文献 14
附录 14
绪论
地球是人类共同的家园,大气是我们赖以生存的环境,随着工业革命以来,人类的社会发展迅速。煤碳,石油,天然气等等已经成为主要的能源来源。而其中煤炭目前是我国第一能源。随着经济的发展,我国煤炭需要量和消耗量不断增加,因此也导致环境的污染,造成SO2,CO2等腐蚀性气体大量排入空气当中,遭受酸雨的危害。酸雨的危害无需多说,在我们生活当中随处可见酸雨的危害,它会使建筑物腐蚀受损,使得森林枯萎,植被破坏进而危害畜牧,农业以及城市绿化等等。因此我国非常重视酸雨的危害,积极出台一系列的酸雨和SO2污染的防治法律法规。所以为了早日减少酸雨带来的危害问题,要加快研制适合我国国情的烟气脱硫技术和设备是当前首要任务。放眼看去,我国烟气脱硫技术还处于缓慢的发展阶段,相比日本,美国还有一些欧洲工业强国还存在着不小的差距。
我国现阶段电厂发电或者其他工艺当中控制SO2气体排放最常用,最可靠和高效的技术是烟气脱硫工艺技术。
下面就是常用的四大工艺:
1)石灰石/石灰—石膏法;
2)喷雾干燥法;
3)炉内喷钙炉后增湿活化法;
4)烟气循环流化床法;[5]
而其中石灰石/石灰法是当前技术最成熟、运行最稳定、应用也是最多的脱硫法,它的脱硫效率基本稳定在95%以上。这方法在大于等于300MW机组中应用最为广泛。在大型火电厂中, 世界各国(如德国、日本等)90%以上采用湿式石灰石/石灰—石膏法烟气脱硫工艺。[1]