低温气体渗碳表面强化的304不锈钢 应力腐蚀开裂性能研究任务书
2020-05-05 17:28:55
1. 毕业设计(论文)的内容和要求
本课题利用低温气体渗碳技术,强化304不锈钢表面性能,研究在mgcl溶液下不同时长腐蚀处理后,304奥氏体不锈钢抗应力腐蚀开裂性能的变化,为渗碳后304不锈钢在腐蚀环境中的实际应用问题提供指导和参考。
要求学生主要完成以下工作: ①阅读文献25篇以上,其中英文5篇以上; ②英文翻译(3000字以上):1篇; ③开题报告:1份; ④实习报告:1份; ⑤毕业论文:1篇; ⑥图纸要求:cad图纸不少于3a1。
论文要求条理清楚,文句通顺,图文并茂,层次分明。
2. 参考文献
[1] 康欢举. 316LN 奥氏体不锈钢焊接接头应力腐蚀开裂研究[D]. 上海: 上海交通大学, 2012. [2] 张龙娟. 304 和316L 不锈钢在印染环境中的应力腐蚀试验研究[D]. 杭州: 浙江工业大学, 2010. [3] 董希菁. 奥氏体不锈钢海洋大气环境下应力腐蚀开裂研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012. [4] A Al-Awar, S Aldajah, A Harhara. Stress corrosion cracking for 316 stainless steel clips in a condensate stabilizer [J]. Materials and Corrosion, 2015, 62(9): 884-889. [5] S Ghosh, V Kain. Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking[J]. Journal of Nuclear Materials, 2010, 403(1): 62-67. [6] M Mochizuki. Control of welding residual stress for ensuring integrity against fatigue and stress#8211;corrosion cracking [J]. Nuclear Engineering and Design, 2007,237(2): 107-123. [7] W Tillmann, E Vogli, S Mohapatra. A new approach to improve SCC resistance of austenitic stainless steel with a thin CrN film, deposited by cathodic vacuum arc deposition technique [J]. Surface and Coatings Technology, 2007, 202(4):750-754. [8] O M Alyousif, R Nishimura. The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions [J]. Corrosion Science, 2007, 49(7): 3040-3051. [9] S Ghosh, V P S. Rana, V Kain, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel,Materials and Design, 2011, (32): 3823-3831. [10] N Zhou, R Pettersson, R L Peng, et al. Effect of surface grinding on chloride induced SCC of 304L [J]. Materials Science and Engineering A, 2016, 658:50-59. [11] J Z Lu, K Y Luo, D K Yang, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel [J]. Corrosion Science,2012, 60(3): 145-152. [12] W Li, X Li, H Dong. Effect of tensile stress on the formation of S-phase during low-temperature plasma carburizing of 316L foil [J]. Acta Materialia, 2011,59(14): 5765-5774. [13] J Wang, Z Li, D Wang, et al. Thermal stability of low-temperature-carburized austenitic stainless steel [J]. Acta Materialia, 2017, 128: 235-240. [14] L Ceschini, C Chiavari, E Lanzoni, et al. Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behavior [J]. Materials and Design,2012, 38(400):154-160. [15] F J Martin, P M Natishan, E J Lemieux, et al. Enhanced Corrosion Resistance of Stainless Steel Carburized at Low Temperature [J]. Metallurgical and Materials Transactions A, 2009, 40(8): 1805-1810. [16] 姜勇. 奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用得研究[D]. 南京: 南京工业大学, 2017. [17] ASTM G39-99. Standard practice for preparation and use of bent-beam stress-corrosion test specimens [S]. 2011. [18] ASTM G36-94. Standard practice for evaluating stress-corrosion-cracking resistance of metals and alloys in a boiling magnesium chloride solution [S],2013. [19] S C Gallo, H Dong. EBSD and AFM observations of the microstructural changes induced by low temperature plasma carburising on AISI 316 [J]. Applied Surface Science, 2011, 258(1): 608-613. [20] K Farrell, E D Specht, J Pang, et al. Characterization of a carburized surface layer on an austenitic stainless steel [J]. Journal of Nuclear Materials, 2005, 343(1): 123-133. [21] Y Peng, J Gong, Y Jiang,et al. The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel [J]. Surface and Coating Technology, 2016, (304): 16-22. [22] P Schmuki, H Hildebrand, A Friedrich, et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion [J]. Corrosion Science, 2005, 47(5): 1239-1250. [23] B Zhang, J Wang, B Wu, et al. Unmasking chloride attack on the passive film of metals [J]. Nature Communications, 2018, 9: 2559. [24] A H Heuer, H Kahn, F Ernst, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: Implications of a critical passive layer thickness for breakdown [J]. Acta Materialia, 2012, 60(2): 716-725. [25] Y Sun. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions [J]. Corrosion Science, 2010, 52(8): 2661-2670.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2019-1-13 至 2019-1-27 认真地阅读本任务书,明确自己的学习任务,同时根据自己的任务,查阅中外文献。
了解低温气体渗碳技术。
2019-2-24 至 2019-3-10 完成实习报告,查阅文献,完成文献综述以及英文原版文献的翻译工作。