低温气体渗碳对304不锈钢应力腐蚀开裂的影响任务书
2020-05-06 16:43:38
1. 毕业设计(论文)的内容和要求
论文内容主要有:一、任务书的认真阅读二、参考文献的查阅,完成文献综述;三、英文文献的翻译;四、CAD图绘制;五、试验研究;六、完成论文。
论文主要要求有:一、 毕业论文严格按照时间进度进行;二、 每周与导师交流3次,有问题及时解决;三、英文文献的翻译独立完成,不得使用翻译软件;四、CAD图绘制独立完成,不得拷贝其他人的CAD文件。
2. 参考文献
[1] J.L. Jones, M.G. Koul, J.J. SChubbe, An Evalution of the corrosion and mechanical performance of interstitially surface-hardened stainless steel, J.Mater. Eng. Perform. 23 (2014) 2055#8211;2066. [2] J. Buhagiar, H. Dong, Corrosion properties of S-phase layers formed onmedical grade austenitic stainless steel, J. Mater. Sci. Mater. Med. 23 (2012) 271#8211;281. [3] H. Dong, S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys, Int. Mater. Rev. 55 (2010) 65#8211;98. [4] S. Ghosh, V. Kain, Microstructural changes in AISI 304 stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking, J. Nucl. Mater. 403 (2010) 62#8211;67. [5] M. Mochizuki, Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking, Nucl. Eng. Des. 237 (2007) 107#8211;123. [6] W. Tillmann, E. Vogli, S. Mohapatra, A new approach to improve SCC resistance of austenitic stainless steel with a thin CrN film, deposited by cathodic vaccuum arc deposition technique, Surf. Coat. Technol. 202 (2007) 750#8211;754. [7] O.M. Alyousif, R. Nishimura, The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions, Corros. Sci. 49 (2007) 3040#8211;3051. [8] S. Ghosh, V.P.S. Rana, V. Kain, Vivek Mittal, S.K. Baveja, Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel, Mater. Des. 32 (2011) 3823#8211;3831. [9] N. Zhou, R. Petterson, R.L. Peng, M. Schouml;nning, Effect of surface grinding on chloride induced SCC of 304L, Mater. Sci. Eng. A 658 (2016) 50#8211;59. [10] Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science, 2012, 60(3):145-152. [11] Rong D S, Jiang Y, Gong J M. Residual stress in low temperature carburised layer of austenitic stainless steel[J]. Metal Science Journal, 2016, 33(3):277-284. [12] Peng Y, Chen C, Li X, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel[J]. Surface Coatings Technology, 2017, 328. [13] 荣冬松, 巩建鸣, 姜勇, 等. 奥氏体金属低温超饱和气体渗碳表面强化试验装置:, CN103323355A[P]. 2013. [14] 荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015(12):1516-1522. [15] 周阳.低温气体渗碳对奥氏体不锈钢耐蚀性能影响及在双极板中的应用[D]. 南京工业大学, 2017. [16] 高峰,巩建鸣,姜勇,等. 316L奥氏体不锈钢低温气体渗碳后的表面特性[J]. 金属热处理,2014,39(12):102-106. [17] 李朋, 潘邻, 张良界,等. 奥氏体不锈钢渗C层的组织及耐蚀强化性能研究[J] . 表面技术, 2013, 42(4). [18] 付明辉. 预应变对奥氏体不锈钢低温气体渗碳表面强化的影响[D]. 南京工业大学, 2016. 请同学参考以上文献,继续独立查阅文献并补充
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 2018-12-15至 2018-12-21 认真地阅读本任务书,明确自己的学习任务,同时根据自己的任务,查阅中外文献。
2019-12-22至 2019-01-18 在查阅文献的基础上,完善实验方案,同时完成文献综述、英文原版文献的翻译、及开题报告工作。
2019-01-19至 2019-02-28 根据试验方案准备实验材料、加工试样、熟悉设备及实验流程,开始试验工作。