全碳纤维复合材料离心涡轮结构设计与分析毕业论文
2021-03-22 22:26:30
摘 要
以往的离心涡轮绝大多数都是使用用金属材料制造生成。传统金属材料虽然价格低廉,但是确实具有振动大,重量大,噪声大等等缺点,从而使得由传统金属材料制成的离心涡轮也同样具有着上述的弊端。随着社会的进步,科学技术的发展,国家对新材料领域的不断探索不断深入。同时,在面对更加复杂的使用环境时,对于离心涡轮的性能要求随之提高。如今,各行各业对于碳纤维复合材料的使用也越来越多。碳纤维复合材料具有着比强度高,比刚度高,阻尼大,噪声小,固有频率高等优秀的属性,从而渐渐被运用于作为挖掘抽吸系统的离心涡轮的制作材料。使用碳纤维复合材料制作的离心涡轮,重量得到大幅度减小,而且还具有强度高、声阻尼性能优良、方便维修、抵抗抗冲击、承受腐蚀佳等许多优点。本次毕业设计旨在使用碳纤维复合材料,进行离心涡轮的基本设计和有限元分析,并且对于碳纤维铺层参数的设计进行了初步的探究。
本文参照书本中设计实例,对全碳纤维复合材料离心涡轮进行了选型和设计计算以及三维建模。接着,在Abaqus CAE中导入离心叶轮的三维模型,针对由全碳纤维复合材料制作的离心涡轮,分析在“0°—45°—90°—-45°—0°”和“ 45°,-45°交替”两种不同铺层角度下,离心涡轮的最大变形。之后,分别对全金属材料的离心涡轮和全碳纤维复合材料的离心涡轮进行应力分析,分别得出碳纤维涡轮和金属涡轮的最大变形,并进行对比分析。再运用Tsai-Wu失效准则对叶轮进行失效判定。
分析结果显示:不同碳纤维铺层角度下的离心叶轮的性能存在明显差异。采用“0°—45°—90°—-45°—0°”的角度铺层,得到的叶轮应力和变形量均要明显小于采用“ 45°,-45°交替”的角度铺层。所以铺层时应尽量采用“0°—45°—90°—-45°—0°”的角度进行铺层。其次,对比全金属叶轮,碳纤维叶轮在轻量化的同时,叶轮的应力和变形量均有所增加。
关键词:离心叶轮,碳纤维复合材料,有限元分析,碳纤维铺层
Abstract
The vast majority of centrifugal turbines used in the past are made of metal materials. Although the traditional metal materials inexpensive, but does have a large vibration, heavy weight, noise and other shortcomings, making the traditional metal material made of centrifugal turbine also has the above drawbacks. With the progress ofsociety, the development of science and technology, the state of continuous exploration of new materials continue to deepen. At the same time, in the face of more complex use of the environment, the performance requirements for centrifugal turbines with the increase. Today, all walks of life for the use of carbon fiber composite materials are also more and more. Carbon fiber composite material has thecharacteristics of high strength, large rigidity, large damping, low noise and high natural frequency, and has gradually become a new production material forcentrifugal turbines which are now used to excavate the suction system.The use of carbon fiber composite materials produced by the centrifugal turbine quality greatly reduced, but also has high strength, sound damping performance, easy maintenance, impact resistance, corrosion resistance and many other advantages. The graduation design aims to use carbon fiber composite materials, the basic design of centrifugal turbines and finite element analysis, and the design of carbon fiber pavement parameters were initially explored.
In this paper, the design of the book, the whole carbon fiber composite centrifugal turbine was selected and design calculations and three-dimensional modeling. Then, the model was introduced into Abaqus CAE. For the whole carbon fiber composite centrifugal turbine, the analysis was carried out at "0 °,-45 °,-90 °,- 45 ° -0 °" and " 45 °, -45 °alternation" The maximum deformation of the centrifugal turbine at different laying angles. Then, the centrifugal turbines of all-metal materials and centrifugal turbines of all-carbon fiber composites were analyzed respectively. The maximum deformation of carbon fiber turbines and metal turbines was obtained and compared. And then use the Tsai-Wu failure criterion to determine the failure of the impeller.
The results show that there are significant differences in the performance of the centrifugal impeller at different carbon fiber laying angles. With the angle of “0 °-45 °,-90 °,- 45 °,-0 °”, the resulting impeller stress and deformation should be significantly smaller than the angle of " 45 °, -45 ° alternating". So the layer should be used as much as possible "0 °,-45 °,-90 °,- 45 °,-0 °" angle of the laying. Secondly, compared to all-metal impeller, carbon fiber impeller in the light of the same time, the impeller stress and deformation are increased.
Key words:Centrifugal impeller,CFRP,laying angle,Finite element analysis
目录
摘要 Ⅰ
Abstract Ⅱ
第1章 绪论 1
1.1 研究背景 1
1.2 国内外研究现状 1
1.3 课题的研究目的和意义 2
1.3.1 研究目的 2
1.3.2 研究意义 3
1.4 课题主要研究内容和技术路线 3
1.4.1 研究内容 3
1.4.2技术路线 3
第2章 碳纤维复合材料铺层设计基础 5
2.1 复合材料概念 5
2.2 碳纤维属性和工艺简介 5
2.3 各向异性强度理论 5
第3章叶轮的设计与计算 7
3.1材料的选择 7
3.2叶轮的选型 7
3.3 叶轮的设计 8
3.3.1叶轮设计计算 8
3.3.2 叶轮主要尺寸 13
第4章 叶轮模型的建立 14
4.1 叶轮轮盘的模型建立 14
4.2 叶轮轴盘的模型建立 15
4.3 叶轮叶片的模型建立 15
4.4 叶轮轮盖的模型建立 16
4.5 对叶轮进行装配 16
第5章 不同铺层角度下全碳纤维离心叶轮与全金属叶轮的有限元分析 17
5.1 仿真思路分析 17
5.2 分析步骤简介 17
5.3 两种角度铺层仿真结果分析 18
5.3.1 “0°—45°—90°—-45°—0°”铺层角度 18
5.3.2 “ 45°、-45°交替”铺层仿真结果分析。 20
5.3.3 “0°—45°—90°—-45°—0°”铺层的叶轮失效判定 20
5.4 全碳纤维叶轮与金属叶轮的仿真对比 21
第6章 总结与展望 22
6.1 总结 22
6.2 展望 22
致谢 23
参考文献 24