登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 开题报告 > 机械机电类 > 机械工程及自动化 > 正文

可编程温度响应智能水凝胶制动器的设计与制备开题报告

 2020-04-10 14:40:02  

1. 研究目的与意义(文献综述)

1.1 目的及意义

水凝胶是一种经适度交联而具有三维网络的、亲水但不溶于水的功能高分子材料[1]。智能水凝胶[2-4],又称刺激响应水凝胶,是一类能对外界环境变化具有响应性的水凝胶,其在外界环境刺激因素(包括温度[5-7]、光[8-10]、电磁场[11-13]和溶剂[14; 15]等)影响下,能产生有效响应,使自身的性质(如相态、形状、力学性能[16]等)随之发生变化,如图1(a)、(b)、(c)所示为智能响应性水凝胶实现跨结构尺度变化。

近年来,基于响应性水凝胶材料的各种功能性器件在智能微机械[17-19]、软体机器人[20-22]及生物医学等领域广泛应用。将刺激响应性水凝胶材料同惰性材料相结合,控制不同材料按照特定的图案进行排布,在外界环境刺激下,水凝胶材料会响应环境刺激溶胀或收缩,而惰性材料保持不变,这种复合结构就能够按照设定的图案进行响应性形变。按照这一思路,各种水凝胶自折叠致动器结构[23-25]、折纸结构[26-28]被不断报道,如图2(a)、(b)所示为响应性水凝胶致动器的应用。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

2.1 研究(设计)的基本内容

1)根据文献调研响应性水凝胶的研究现状,详细了解响应性水凝胶的工作原理和应用形式,对掺杂纳米材料和多响应机制深入理解。

2)激光修饰衬底薄膜工艺的研究。通过激光修饰衬底材料将其制作为所需要的形状。激光剪裁工艺需要考虑薄膜的厚度、物理性质,以及对热量的吸收程度,为之相关的是激光参数,包括激光波长、重复频率、激光功率和脉冲宽度。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

第1-2周:完成文献调研;

第3周:完成外文翻译;

第4周:完成开题报告;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

[1] 李贤真, 李彦锋, 朱晓夏, et al. 高分子水凝胶材料研究进展[J]. 功能材料, 2003, 34(4): 382-385.

[2] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.

[3] Gladman A S, Matsumoto E A, Nuzzo R G, et al. Biomimetic 4D printing[J]. Nature materials, 2016, 15(4): 413-418.

[4] Tibbits S. 4D printing: multi‐material shape change[J]. Architectural Design, 2014, 84(1): 116-121.

[5] Zhang X, Pint C L, Lee M H, et al. Optically-and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites[J]. Nano letters, 2011, 11(8): 3239-3244.

[6] Davis D, Chen B, Dickey M D, et al. Self-folding of thick polymer sheets using gradients of heat[J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031014.

[7] Yamamoto Y, Kanao K, Arie T, et al. Air ambient-operated pNIPAM-based flexible actuators stimulated by human body temperature and sunlight[J]. ACS applied materials amp; interfaces, 2015, 7(20): 11002-11006.

[8] Liu Y, Boyles J K, Genzer J, et al. Self-folding of polymer sheets using local light absorption[J]. Soft Matter, 2012, 8(6): 1764-1769.

[9] Ryu J, D’amato M, Cui X, et al. Photo-origami—Bending and folding polymers with light[J]. Applied Physics Letters, 2012, 100(16): 161908.

[10] Tai Y, Lubineau G, Yang Z. Light‐Activated Rapid‐Response Polyvinylidene‐Fluoride‐Based Flexible Films[J]. Advanced Materials, 2016, 28(23): 4665-4670.

[11] Hu W, Lum G Z, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018.

[12] Breger J C, Yoon C, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers[J]. ACS applied materials amp; interfaces, 2015, 7(5): 3398-3405.

[13] Lum G Z, Ye Z, Dong X, et al. Shape-programmable magnetic soft matter[J]. Proceedings of the National Academy of Sciences, 2016, 113(41): E6007-E6015.

[14] Han D D, Zhang Y L, Jiang H B, et al. Moisture‐responsive graphene paper prepared by self‐controlled photoreduction[J]. Advanced Materials, 2015, 27(2): 332-338.

[15] Luo C, Yeh C N, Baltazar J M L, et al. A Cut‐and‐Paste Approach to 3D Graphene‐Oxide‐Based Architectures[J]. Advanced Materials, 2018.

[16] Sun J-Y, Zhao X, Illeperuma W R, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133.

[17] Felton S, Tolley M, Demaine E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197): 644-646.

[18] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-455.

[19] Duduta M, Clarke D R, Wood R J. A high speed soft robot based on dielectric elastomer actuators[C]. Robotics and Automation (ICRA), 2017 IEEE International Conference on, 2017: 4346-4351.

[20] Bartlett N W, Tolley M T, Overvelde J T, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165.

[21] Acome E, Mitchell S, Morrissey T, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance[J]. Science, 2018, 359(6371): 61-65.

[22] Paik J. Soft Robotics: Transferring Theory to Application," Soft Components for Soft Robots"[R]. Springer, 2015.

[23] Wang W, Kim N-G, Rodrigue H, et al. Modular assembly of soft deployable structures and robots[J]. Materials Horizons, 2017, 4(3): 367-376.

[24] Van Manen T, Janbaz S, Zadpoor A A. Programming the shape-shifting of flat soft matter[J]. Materials Today, 2017.

[25] Azam A, Laflin K E, Jamal M, et al. Self-folding micropatterned polymeric containers[J]. Biomedical microdevices, 2011, 13(1): 51-58.

[26] Chen Y, Peng R, You Z. Origami of thick panels[J]. Science, 2015, 349(6246): 396-400.

[27] Fu H, Nan K, Bai W, et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics[J]. Nature materials, 2018, 17(3): 268.

[28] Santangelo C D. Extreme Mechanics: Self-Folding Origami[J]. Annual Review of Condensed Matter Physics, 2017, 8: 165-183.

[29] Wichterle O, Lim D. Hydrophilic gels for biological use[J]. Nature, 1960, 185(4706): 117.

[30] Hirokawa Y, Tanaka T. Volume phase transition in a non‐ionic gel[C]. AIP Conference Proceedings, 1984: 203-208.

[31] Pelton R, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide[J]. Colloids and Surfaces, 1986, 20(3): 247-256.

[32] Na J H, Evans A A, Bae J, et al. Programming reversibly self‐folding origami with micropatterned photo‐crosslinkable polymer trilayers[J]. Advanced Materials, 2015, 27(1): 79-85.

[33] Zheng W J, An N, Yang J H, et al. Tough al-alginate/poly (n-isopropylacrylamide) hydrogel with tunable lcst for soft robotics[J]. ACS applied materials amp; interfaces, 2015, 7(3): 1758-1764.

[34] Gultepe E, Randhawa J S, Kadam S, et al. Biopsy with Thermally‐Responsive Untethered Microtools[J]. Advanced materials, 2013, 25(4): 514-519.

[35] Kim S Y, Cho S M, Lee Y M, et al. Thermo‐and pH‐responsive behaviors of graft copolymer and blend based on chitosan and N‐isopropylacrylamide[J]. Journal of Applied Polymer Science, 2000, 78(7): 1381-1391.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图