登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 开题报告 > 矿业类 > 测绘工程 > 正文

基于QuickBird影像的云龙湖周边绿地调查与分析开题报告

 2022-01-25 23:43:57  

全文总字数:7271字

1. 研究目的与意义及国内外研究现状

随着科学技术的不断进步, 遥感技术也在日新月异地发展, 卫星影像的分辨率越来越高, 可以根据不同的要求选择所需要的卫星图片。从城市园林绿地具有分散和集中的特点来考虑, 为尽可能详细地查清城市园林绿地信息 , 园林工作者们都倾向于使用高辨率的卫星图片。目前, quickbird 、ikonos 、spot 将是高分辨率卫星影像的主要选择。其中quickbird卫星影像是迄今为止分辨率最高的卫星影像, 利用quickbird卫星影像能准确地反映出城市绿地现状, 最适合城市绿地资源调查。为了查清云龙湖周边绿化现状 , 为建设徐洲园林绿地系统和创建园林城市实施方案提供依据, 徐洲市园林绿化局首次运用quickbird 卫星影像进行园林绿地现状调查, 并取得了良好的成效。

随着对地观测技术的进步,遥感影像的空间分辨率和光谱分辨率越来越高,能够监测到的地面目标也越来越详细和丰富。目前,quickbird商业卫星可提供0.61m分辨率色影像和2.44m分辨率多光谱影像,该影像能够详尽地反映出研究区域绿地现状,在不同尺度的绿地调查中得到了广泛的应用。以quickbird遥感影像为信息源,提取并调查了徐州云龙湖周边草地内各功能区的植被现状,分析了绿地配置、植物物种组成及植物群落结构特征,以期为云龙湖等城市绿地的规划调查、评价与改造提供一些参考。

国内外研究现状

传统的土地利用调查周期长、费用高、效率低,不利于对城市建设的跟踪监测,很难对城市的发展进行科学有效管理。遥感技术作为一门先进的综合性科学技术,它能迅速有效地为城市土地利用动态监测提供多时相、大范围的实时信息,为城市绿地动态监测提供了科学而有效的方法。王斐等针对不同分辨率多源遥感影像利用 同方法对城市绿地信息进行提取; 黄浩、吕杰、乔玉良、刘向增、黄莉采用基于相元分类方法对城市绿地信息进行提取; 刘充、王志岗、申广荣等利用面向对象分类提取城市绿地信息。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容

全文共分为六章,每章的主要内容为:

第一章介绍了研究背景,从城市园林绿地具有分散和集中的特点来考虑 , 为尽可能详细地查清城市园林绿地信息 , 园林工作者们都倾向于使用高分辨率的卫星图片。目前, quickbird 、ikonos 、spot 将是高分辨率卫星影像的主要选择。其中quickbird 卫星影像是迄今为止分辨率最高的卫星影像, 利用quickbird卫星影像能准确地反映出城市绿地现状, 最适合城市绿地资源调查。

第二章介绍了本文的研究数据情况,2001年10月18日, 由digitalglobe 所有的quickbird高分辨率遥感 卫星在加利福 尼亚范登堡空军基地发射升空。卫星进入98太阳同步轨道,重访周期1~6d, 观测角度沿轨/横轨方向( /-25 度), 它可提供61cm 辨率全色影像和2.44m分辨率多光谱影像 。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 实施方案、进度安排及预期效果

实施方案:在阅读相关指定参考文献的基础上,运用所学遥感知识,对quickbird卫星影像进行预处理,通过软件提取归一化植被指数,从而计算草地面积,科学合理进行城市规划,优化城市绿地结构,改善城市绿地分布零星破碎的现状。走绿色可持续经济发展道路,缓解经济增长带来的城市扩张压力,减少建设用地对城市绿地的侵占。

进度安排:2018年11月15日前,完成选题;

2018年11月15日前,了解课题,填写毕业论文任务书;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献

[1]Askew, D., Slater, J.. Assessing the nature conservation value of grasslands by remote sensing[P]. Geoscience and Remote Sensing Symposium, 1995. IGARSS 95. Quantitative Remote Sensing for Science and Applications, International,1995.[2]Nouvellon, Y., Lo Seen, D., Begue, A., Rambal, S., Moran, M.S., Qi, J., Chehbouni, A., Kerr, Y.. Combining remote sensing and plant growth modeling to describe the carbon and water budget of semi-arid grasslands[P]. Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS 98. 1998 IEEE International,1998.[3]Watson, C.J.,Restrepo Coupe, N.,Huete, A.R.. Hyperspectral assesments of condition and species composition of Australian grasslands[P]. ,2013.[4]Shi Jingjing,Zhang Yuxing,Xia Chaozong. Forest resources annual dynamic monitoring based on high resolution remote sensing data[P]. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International,2014.[5]Haixia Yang,Aixia Dou,Wei Zhang,Shusong Huang. Study on extraction of earthquake damage information based on regional optimizing change detection from remote sensing image[P]. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International,2014.[6]Sisodia, P.S.,Tiwari, V.,Kumar, A.. Analysis of Supervised Maximum Likelihood Classification for remote sensing image[P]. Recent Advances and Innovations in Engineering (ICRAIE), 2014,2014.[7]Zheng Zhang,Yang, M.Y.,Mei Zhou,Xiang-zhao Zeng. Simultaneous remote sensing image classification and annotation based on the spatial coherent topic model[P]. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International,2014.[8]Clilverd, M.A.,Rodger, C.J.,Neal, J.J.,Cresswell-Moorcock, K.. Remote sensing space weather events through ionospheric radio: The AARDDVARK network[P]. General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI,2014.[9]Benson, M.,Pierce, L.,Sarabandi, K.. Forest feature estimation using multi-modal remote sensing and sensor extrapolation techniques[P]. General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI,2014.[10]Guo Jie,Yijun He. Using remote sensing method analysis characteristic of Bohai Sea and Yellow Sea mixed zone[P]. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International,2014.[11]Pupin Mello, M.,Atzberger, C.,Formaggio, A.R.. Near real time yield estimation for sugarcane in Brazil combining remote sensing and official statistical data[P]. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International,2014.[12]Shen Shaohong,Mo Xiaocong,Zhang Qian. Land Use/Cover Classification of Cloud-Contaminated Area by Multitemporal Remote Sensing Images[P]. Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on,2014.[13]Stark, B.,Smith, B.,YangQuan Chen. Survey of thermal infrared remote sensing for Unmanned Aerial Systems[P]. Unmanned Aircraft Systems (ICUAS), 2014 International Conference on,2014.[14]Tian Xia,Wenbin Wu,Qingbo Zhou,Peng Yang,Yanxia Liu. Spatial dynamics modelling of crops pattern with remote sensing classification data[P]. Agro-geoinformatics (Agro-geoinformatics 2014), Third International Conference on,2014.[15]Dongshui Zhang,Xinbao Chen,Yongshun Han,Lixia Cong,Qinmin Wang,Xiaoqin Wang. Remote sensing image classification with small training samples based on grey theory[P]. Earth Observation and Remote Sensing Applications (EORSA), 2014 3rd International Workshop on,2014.[16]Baumgartner, J.,Scavuzzo, M.,Rodriguez Rivero, C.,Pucheta, J.. A new approach to segmentation of remote sensing images with Hidden Markov Models[P]. Biennial Congress of Argentina (ARGENCON), 2014 IEEE,2014.[17]Liu Yan, Zhao Yingshi, Feng Xiaoming. A remote sensing-based net primary productivity model for semi-arid grasslands: model description and validation[P]. Geoscience and Remote Sensing Symposium, 2005. IGARSS 05. Proceedings. 2005 IEEE International,2005.[18]Henderson, J., Piwowar, J.. Analysis of Changes in Vegetation Condition in Grasslands National Park Using Remote Sensing[P]. Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on,2006.[19]Dusseux, P., Hubert-Moy, L., Lecerf, R., Xing Gong, Corpetti, T.. Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images[P]. Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011 6th International Workshop on the,2011.[20]Ritchie, J.C., Schmugge, T.J., Rango, A., Schiebe, F.R.. Remote sensing applications for monitoring semiarid grasslands at the Sevilleta LTER, New Mexico[P]. Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International,2000.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图