三维网状蒙脱石/硬脂酸复合相变储能材料的制备及性能研究开题报告
2020-02-10 23:38:29
1. 研究目的与意义(文献综述)
对于全世界来说,能源是科技进步和经济发展的必需品[1]。
自1970年能源危机开始,可持续发展和可再生能源一直只一个人们关注的热点[2]。
化石燃料的整个能源的比重为80%,而化石燃料的燃烧有带来了许多环境问题 [3]。
剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!
2. 研究的基本内容与方案
二、 研究(设计)的基本内容、目标、拟采用的技术方案及措施研究目标:
揭示三维网状蒙脱石/硬脂酸复合相变材料形成的本质规律,以此制备出全新概念的三维网状蒙脱石/硬脂酸复合相变材料,通过大幅提高对相变材料的负载容量来提高相变储热容量,实现热能的高效利用。
研究目标如下:
① 制备三维网状蒙脱石;
② 通过负载硬脂酸制备三维网状蒙脱石/硬脂酸复合相变材料基本的研究内容:
(1)二维蒙脱石的制备,对原料进行物相、化学成分、物理性质和化学性质分析,通过超声波和高强度机械剪切作用将蒙脱石剥离成单片层,利用原子力显微镜测定蒙脱石纳米片的厚度;
(2)三维网状蒙脱石材料的制备,基于研究内容(1)的结果,考察蒙脱石纳米片厚度分布、片径尺寸对三维蒙脱石材料的影响机制,研究不同工艺条件(反应温度、反应时间,反应转速,反应物质量比等)对三维蒙脱石材料结构性能的影响;
(3)制备复合硬脂酸的三维网状蒙脱石的复合相变材料,利用真空浸渍法将硬脂酸与三维网状蒙脱石材料复合。
(4)三维网状结构复合相变材料的性能表征,对三维网状蒙脱石复合相变材料的结构进行表征,热性质进行表征,光热转换性质进行表征。
剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!
3. 研究计划与安排
第 01~02周 通过查阅文献大致了解国内外制备相变储能材料的现状;
第03~04周 查阅相关文献资料,明确研究内容,确定试验方案,完成开题报告;
第05~12周 确定试验方案,完成试验内容;
第13~14周 完成并修改毕业论文;
第15~16周 准备论文答辩。
4. 参考文献(12篇以上)
[1] Nazir, H., Batool, M., Bolivar Osorio, F. J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., … Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491–523.
[2]Zhao, C. Y., amp; Zhang, G. H. (2011). Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813–3832.
[3]Zhou, D., Zhao, C. Y., amp; Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593–605.
[4]Wani, C., amp; Kumar Loharkar, P. (2017). A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage. Materials Today: Proceedings, 4(9), 10264–10267. https://doi.org/10.1016/j.matpr.2017.06.361
[5]Sarier, N., Onder, E., Ozay, S., amp; Ozkilic, Y. (2011). Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochimica Acta, 524(1–2), 39–46.
[6] Deng, Y., Li, J., Qian, T., Guan, W., Li, Y., amp; Yin, X. (2016). Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chemical Engineering Journal, 295, 427–435.
[7] Cordobilla, R., Bayés-García, L., Calvet, T., Ventolà, L., Benages, R., amp; Cuevas-Diarte, M. A. (2010). Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Solar Energy Materials and Solar Cells, 94(7), 1235–1240.
[8]Zhao, C. Y., amp; Zhang, G. H. (2011). Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813–3832.
[9] Lin, Y., Jia, Y., Alva, G., amp; Fang, G. (2018). Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews, 82(September 2017), 2730–2742.
[10] P. Lv, C. Liu, Z. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renew. Sustain. Energy Rev. 68 (2017) 707–726.
[11]Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., amp; He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258.
[12] Chen, T., Zhao, Y., amp; Song, S. (2017). Correlation of electrophoretic mobility with exfoliation of montmorillonite platelets in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 525(May), 1–6.
[13] Wang, Y., Zheng, H., Feng, H. X., amp; Zhang, D. Y. (2012). Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials. Energy and Buildings, 47, 467–473.
[14] Sarier, N., Onder, E., Ozay, S., amp; Ozkilic, Y. (2011). Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochimica Acta, 524(1–2), 39–46.
[15]Yi, H., Zhan, W., Zhao, Y., Qu, S., Wang, W., Chen, P., amp; Song, S. (2019). A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties. Solar Energy Materials and Solar Cells, 192(September 2018), 57–64.
剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付
您可能感兴趣的文章
最新文档
- 华北地区夏季降水多年、少年近地层水汽场及风场分布特征开题报告
- 天山地区典型流域降雪分布研究文献综述
- 2016年台风狮子山路径突变原因的初步分析开题报告
- 北京和寿县地区边界层急流观测与模型的对比文献综述
- 具有双Kelvin波结构MJO活动的再分析开题报告
- 基于单片机的温控风扇设计文献综述
- 1961-2015年江苏省气候资源的时空分布规律开题报告
- 智能搬运机器人文献综述
- 基于类型的电影推荐系统文献综述
- Bi6S2O15的合成及其降解有机污染的研究开题报告
- 不确定时滞奇异摄动系统的鲁棒控制器设计文献综述
- 小型双模SIW滤波器的研究与设计开题报告
- 我国绿色出行政策执行研究——以南京市为例文献综述
- 试论李碧华小说中的爱情悲剧开题报告
- 基于FPGA的电子相册设计文献综述