铜印迹壳聚糖/蒙脱石凝胶用于去除水体重金属开题报告
2020-02-18 12:40:43
1. 研究目的与意义(文献综述)
重金属污染问题已经成为我们生态系统和人类健康的一大威胁[1]。化学沉淀、[2]电沉积、液-液萃取、[3]和膜分离等各种技术[4-5]已被广泛应用于去除重金属离子。然而,这些方法通常是无效的或昂贵的。由于操作简单、效率高,吸附法越来越受到重视。
基于生物量的生物吸附由于其生物相容性、生物降解性和可再生性而引起越来越多的关注[6]。特别是壳聚糖(cs)等多糖作为去除重金属离子的有效吸附剂受到了广泛关注,而cs的一些缺点则严重限制了其实际应用[6-7]。首先,壳聚糖的机械性能差,在酸性条件下溶解,再生能力差。交联虽然能有效地提高壳聚糖的机械强度,降低壳聚糖在酸溶液中的溶解性,但却降低了吸附能力[8]。此外,粉状吸附剂的回收难度较大,这些传统的吸附材料不适合于固相萃取柱中的填料[9]。此外,大多数的壳聚糖在酸溶液中的溶解度都很低。如果这些材料不能选择性地吸附目标金属。因此,合成一种具有高吸附能力、高选择性和优良分离性能的壳聚糖基吸附剂显得十分迫切。
石墨烯是一种迷人的碳材料,具有优异的机械和物理化学性能。氧化石墨烯(go)是石墨烯[10]的重要衍生物,具有高的表面积和丰富的含氧官能团,因此被认为是一种很有前途的重金属离子去除材料。chitosan-go 将壳聚糖优良的吸附性能与go固有性能相结合的复合材料,通过自组装、控制表面沉积和直接共价吸附等方法[12-13],被用作生物吸附剂和生物传感器。提高了壳聚糖的吸附能力和力学性能,同时也解决了回收go的困难。离子印迹聚合物(iip)具有良好的选择性,是一种很有前途的重金属离子去除和富集吸附剂[14-16]。近年来,人们对iip在生物吸附剂制备中的应用进行了大量的研究[17,18]。种不同的高分子生物材料,如壳聚糖和海藻酸钠,已经被广泛应用于生物吸附剂的制备。已经成功地用于制备能够吸收不同目标金属离子的iip[19,20]。此外,一种称为磁辅助分离[21-24]的分离技术被认为是实现固液混合物分离的有效方法。离子印迹法与磁选技术相结合制备新型吸附剂解决了从吸附液中回收常规材料的困难。
2. 研究的基本内容与方案
研究目标:
本研究的目的是合成吸附能力强、分离性能好、吸附性能好的离子印迹磁性壳聚糖微球。
具体研究目标如下:
3. 研究计划与安排
第 01~02周 通过查阅文献大致了解国内外制备相变储能材料的现状;
第03~04周 查阅相关文献资料,明确研究内容,确定试验方案,完成开题报告;
4. 参考文献(12篇以上)
[1] He, J.; Chen, J. P. A. Comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67#8722;78.
[2] Kurniawan, T. A.; Chan, G. Y. S.; Lo, W. H.; Babel, S. Physicochemical treatment techniques for wastewater laden with heavy metals.Chem. Eng. J. 2006, 118, 83#8722;98.
[3] Khoutoul, M.; Lamsayah, M.; Alblewi, F. F.; Rezki, N.; Aouad, M.R.; Mouslim, M.; Touzani, R. Liquid-liquid extraction of metal ions,DFT and TD-DFT analysis of some 1,2,4-Triazole Schiff Bases with
high selectivity for Pb(II) and Fe(II). J. Mol. Struct. 2016, 1113, 99#8722;107.
[4] Zhang, L.; Zhao, Y. H.; Bai, R. Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: application to cadmium. J. Membr. Sci. 2011, 379,
69#8722;79.
[5] Nezhadali, A.; Mohammadi, R.; Akbarpour, M.; Ebrahimi, J.Selective transport of Cu(II) ions from a mixture of Mn(II), Co(II),Ni(II), Cu(II), Zn(II), and Pb(II) cations through a bulk liquid membrane using benzyl bis (thiosemicarbazone) as carrier. Desalin. Water Treat. 2016, 57, 13818#8722;13828.
[6] Wang, J. L.; Chen, C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides.Bioresour. Technol. 2014, 160, 129#8722;141.
[7] Zhu, H. Y.; Jiang, R.; Xiao, L.; Zeng, G. M. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized C-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour. Technol. 2010, 101, 5063#8722;5069.
[8] Fan, L.; Luo, C.; Lv, Z.; Lu, F.; Qiu, H. Removal of Ag from water environment using a novel magnetic thiourea#8722;chitosan imprinted Ag . J. Hazard. Mater. 2011, 194, 193#8722;201.
[9] Luo, X. G.; Zeng, J.; Liu, S. L.; Zhang, L. N. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresour. Technol.
2015, 194, 403#8722;406.
[10] Patra, S.; Roy, E.; Madhuri, R.; Sharma, P. K. Fast and selective preconcentration of europium from wastewater and coal soil by graphene oxide/silane@Fe3O4 dendritic nanostructure. Environ. Sci.
Technol. 2015, 49, 6117#8722;6126.
[11]Zhao, G. X.; Wen, T.; Chen, C. L.; Wang, X. K. Synthesis of graphene-based nanomaterials and their application in energy-related and environmental related areas. RSC Adv. 2012, 2, 9286#8722;9303.
[12] Liao, N. N.; Liu, Z. S.; Zhang, W. J.; Gong, S. G.; Ren, D. M.;Ke, L. J.; Lin, K.; Yang, H.; He, F. A.; Jiang, H. L. Preparation of a novel Fe3O4/graphene oxide hybrid for adsorptive removal of methylene blue from water. J. Macromol. Sci., Part A: Pure Appl.Chem. 2016, 53, 276#8722;281.
[13] Yan, H.; Yang, H.; Li, A. M.; Cheng, R. S. Ph-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chem. Eng. J. 2016, 284,
1397#8722;1405.
[14] Liu, Y.; Meng, X. G.; Luo, M.; Meng, M. J.; Ni, L.; Qiu, J.; Hu,Z. Y.; Liu, F. F.; Zhong, G. X.; Liu, Z. C.; Yan, Y. S. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide
for removal of strontium from aqueous solution. J. Mater. Chem. A 2015, 3, 1287#8722;1297.
[15] Dai, J. D.; He, J. S.; Xie, A. T.; Gao, L.; Pan, J. M.; Zhou, Z. P.;Wei, X.; Yan, Y. S.; Chen, X. Novel pitaya-inspired well-defined coreshell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal. Chem. Eng. J. 2016, 284, 812#8722;822.
[16] Luo, X. B.; Liu, L. L.; Deng, F.; Luo, S. L. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(II) ions in real environmental water samples. J. Mater.
Chem. A 2013, 1, 8280#8722;8286.
[17] Huang, H. L.; Wang, X. H.; Ge, H.; Xu, M. Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate. ACS Sustainable Chem. Eng. 2016, 4, 3334#8722;
3343.
[18] Wang, Y. H.; Li, L. L.; Luo, C. N.; Wang, X. J.; Duan, H.Removal of Pb2 from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2 . Int. J. Biol. Macromol. 2016,
86, 505#8722;511.
[19] Hande, P. E.; Kamble, S.; Samui, A. B.; Kulkarni, P. S. Chitosanbased lead ion-imprinted nterpenetrating polymer network by simultaneous polymerization for selective extraction of Lead(II). Ind.
Eng. Chem. Res. 2016, 55, 3668#8722;3678.
[20] Zhang, M.; Zhang, Y.; Helleur, R. Selective adsorption of Ag by
ion-imprinted o-carboxymethyl chitosan beads grafted with thioureaglutaraldehyde. Chem. Eng. J. 2015, 264, 56#8722;65.
[21] Dolatkhah, A.; Wilson, L. D. Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue. ACS Appl. Mater. Interfaces 2016, 8, 5595#8722;5607.
[22] Yang, S. B.; Okada, N.; Nagatsu, M. The highly effective removal of Cs by low turbidity chitosan-grafted magnetic bentonite. J.Hazard. Mater. 2016, 301, 8#8722;16.
[23] Zhang, J. M.; Zhai, S. R.; Li, S.; Xiao, Z. Y.; Song, Y.; An, Q. D.;Tian, G. Pb (II) Removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process. Chem. Eng. J. 2013,215-216, 461#8722;471.
[24] Zhang, Y.; Wang, W.; Li, Q.; Yang, Q. B.; Li, Y. X.; Du, J. S.Colorimetric magnetic microspheres as chemosensor for Cu2 prepared from adamantane-modied rhodamine and β-cyclodextrinmodied Fe3O4@SiO2 via host-guest interaction. Talanta 2015, 141,33#8722;40