石墨相氮化碳在铝离子电池中的电化学性能研究任务书
2020-04-21 17:11:32
1. 毕业设计(论文)的内容和要求
由于金属锂地壳储量有限以及分布不均匀导致其开采成本增加,电池市场的巨大需求对锂离子电池以外的其他电池体系提出要求。
铝离子电池因其高体积容量,低成本和丰富的铝含量而被视为锂离子电池的可行替代品。
目前,铝电池中最普遍应用的阴极材料是石墨。
2. 参考文献
[1] R.J. Zou, Z.Y. Zhang, M.F. Yuen, M.L. Sun, J.Q. Hu, C.S. Lee, W.J. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries, NPG Asia Material 7 (2015) 195. [2] M.T. Mcdowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater. 25 (2013) 4966-4985. [3] J.X. Zhu, D. Yang, Z.Y. Yin, Q.Y. Yan, H. Zhang, Graphene and graphene-based materials for energy storage applications, Small 10 (2014) 3480-3498. [4] H.P. Jia, P.F. Gao, J. Yang, J.L. Wang, Y.N. Nuli, Z. Yang, Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material, Adv. Energy Mater. 1(2011) 1036-1039. [5] H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent Progress in Electrode Materials for Sodium-Ion Batteries, Adv. Energy Mater. 6 (2016) 1600943. [6] S.Q. Wang, L. Xia, L. Yu, L. Zhang, H.H. Wang, X.W. Lou, Sodium Ion Batteries: Free‐Standing Nitrogen-Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries with Ultralong Cycle Life and Superior Rate Capability, Adv. Energy Mater. 6 (2016) 1502217. [7] B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.M. Tarascon, Insertion compounds and composites made by ball milling for advanced sodium-ion batteries, Nat. Commun. 7 (2016) 10308. [8] A. Eftekhari, Z.L. Jian, X.L. Ji, Potassium Secondary Batteries, ACS Appl. Mater. Interfaces 9 (2016) 4404-4419. [9] L. Fan, Q. Liu, S.H. Chen, K.R. Lin, Z. Xu, B.G. Lu, Potassium-Based Dual Ion Battery with Dual-Graphite Electrode, Small 13 (2017) 1701011. [10] D. Datta, J.W. Li, V.B. Shenoy, Defective Graphene as a High-Capacity Anode Material for Na- and Ca-Ion Batteries, ACS Appl. Mater. Interfaces 6 (2014) 1788. [11] M.E. Arroyo-de Dompabl , C. Krich, J. Nava-Avendano, N. Biskup, M.R. Palacin, F. Barde, A joint computational and experimental evaluation of CaMn2O4 polymorphs as cathode materials for Ca ion batteries, Chem. Mater. 28 (2016) 6886-6893. [12] A. Ponrouch, D. Tchitchekova, C. Frontera, F. Barde, M.E. Arroyo-de Dompablo, M.R. Palacin, Assessing Si-based anodes for Ca-ion batteries: Electrochemical decalciation of CaSi2, Electrochem. Commun. 66 (2016) 75-78. [13] L. Wang, K. Asheim, P.E. Vullum, A.M. Svensson, F. Vullum-Bruer, Sponge-Like Porous Manganese(II,III) Oxide as a Highly Efficient Cathode Material for Rechargeable Magnesium Ion Batteries, Chem. Mater. 28 (2016) 6459-6470. [14] B. Pan, J. Huang, Z. Feng, L. Zeng, M.N. He, L. Zhang, J.T. Vaughey, M.J. Bedzyk, P. Fenter, Z.C. Zhang, Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries, Adv. Energy Mater. 6 (2016) 1600140. [15] Y.Y. Shao, M. Gu, X.L. Li, Z.M. Nie, P.J. Zuo, G.S. Li, T.B. Liu, J. Xiao, Y.W. Cheng, C.M. Wang, J.G. Zhang, J. Liu, Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries, Nano Lett. 14 (2014) 255-260.
3. 毕业设计(论文)进程安排
2018.12.20 - 12.26 毕业论文动员、分组、介绍各自题目 2018.12.27 - 12.29 了解课题背景,查阅文献 2019.01.02 - 01.13 文献综述,翻译外文资料,开题报告 2019.01.13 - 02.23 寒假 2019.02.24 - 02.28 设计实验思路 2019.02.29 - 03.11 制定具体实验方案 2019.03.12 - 03.20 制备复合材料 2019.03.21 - 03.26 X射线衍射分析 2019.03.27 - 04.06 SEM分析 2019.04.07 - 04.25 恒流充放电测试、交流阻抗测试等 2019.04.26 - 04.31 实验结果、数据整理分析 2019.05.01 - 06.05 改性研究并撰写论文 2019.06.06 - 06.10 答辩