双重退火对TC4-xFe力学性能影响的研究任务书
2020-05-15 22:26:14
1. 毕业设计(论文)的内容和要求
钛及钛合金以其高比强度、低弹性模量、强耐腐蚀性、低膨胀系数、低热导率以及环境友好等优势,经常被用于航空航天、海洋船舶以及生物医疗等领域。tc4钛合金凭借其良好的综合力学性能,目前仍是世界范围内使用最为广泛的钛合金(约占钛材消费量的50%)。但tc4合金的缺点也比较明显,合金的抗拉强度相对较低,难以胜任高强度需求;同时合金高温塑性变形加工时流变抗力较大,热加工性能较差。通过向tc4钛合金中添加少量的低成本元素fe,在保证合金优良塑韧性的前提下,提高合金的强度以满足构件对强度的要求,同时fe元素的添加降低了tc4合金热加工过程中的流变抗力,改善了合金的热加工性。双重退火工艺中第一次退火过程利于组织中α相基本转变为β相,影响冷却后最终组织中初生α相的形态,第二次退火为一般的时效处理,使合金冷却后得到细小的次生α相,提高合金的强度。采取双重退火的方式可以在合金β基体上弥散析出细小α相,从而提高钛合金的强韧性和损伤容限性,最终能得到稳定态的组织形貌。本课题主要研究双重退火对tc4-xfe合金力学性能的影响规律,探讨不同fe含量对合金力学性能的演变过程,通过对合金断口形貌的观察分析,确定试样的断裂行为方式,为今后的应用提供理论依据。
本次论文的内容为:
(1) 查阅中外文资料15篇以上,了解tc4合金的力学性能指标和双重退火对合金力学性能的影响规律,撰写开题报告。
2. 参考文献
1. Lu Y, Tang H B, Fang Y L, et al. Microstructure evolution of sub-critical annealed laser deposited Ti-6Al-4V alloy[J]. Materials amp; Design, 2012, 37:56-63. 2. Guo P, Zhao Y, Zeng W, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys[J]. Materials Science amp; Engineering A, 2013, 563(2):106-111. 3. Du Z X, Xiao S L, Shen Y P, et al. Effect of hot rolling and heat treatment on microstructure and tensile properties of high strength beta titanium alloy sheets[J]. Materials Science amp; Engineering A, 2015, 631:67-74. 4. Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and Mechanical properties[J]. Journal of Alloys amp; Compounds, 2012, 541(22):177-185. 5. Chandravanshi V K, Bhattacharjee A, Kamat S V, et al. Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti-1100-0.1B alloy[J]. Journal of Alloys amp; Compounds, 2014, 589(4):336-345. 6. Peng X N, Guo H Z, Shi Z F, et al. Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3):682-689. 7. Mironov S, Murzinova M, Zherebtsov S, et al. Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure[J]. Acta Materialia, 2009, 57(8):2470-2481. 8. Michiyama Y, Demizu K. Surface Age Hardening and Wear Properties of Beta-Type Titanium Alloy by Laser Surface Solution Treatment[J]. Materials Transactions, 2011, 52(7):714-718. 9. Shi X H, Zeng W D, Shi C L, et al. The effects of colony microstructure on the fatigue crack growth behavior for T-6A-2Zr-2Sn-3Mo-1Cr-2Nb titanium alloy[J]. Materials Science amp; Engineering A, 2015, 621:252-258. 10. Khanna N, Sangwan K S. Machinability analysis of heat treated Ti64, Ti54M and Ti10.2.3 titanium alloys[J]. International Journal of Precision Engineering amp; Manufacturing, 2013, 14(5):719-724. 11. 樊亚军, 曹继敏, 杨华斌,等. Fe含量对Ti-6Al-4V钛合金力学性能的影响[J]. 金属热处理, 2013, 38(3):21-23. 12. Da R S, Adabo G L, Henriques G E, et al. Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments[J]. Brazilian Dental Journal, 2006, 17(2):126-129. 13. 黄正阳, 郭子静, 文光平,等. 不同工艺退火后TC4合金的力学性能[J]. 金属热处理, 2015(9):175-178. 14. 刘婉颖, 朱毅科, 施太和,等. 热处理对Ti-6Al-4V钛合金力学性能的影响研究[J]. 热加工工艺, 2013, 42(18):141-143. 15. Li C, Zhang X, Li Z, et al. Effect of heat treatment on microstructure and mechanical properties of ultra-fine grained Ti-55511 near β titanium alloy[J]. Rare Metal Materials amp; Engineering, 2014, 44(2):327#8211;332. 16. 张亚峰, 于振涛, 牛金龙,等. 加工及热处理对Ti5Zr6Mo15Nb钛合金组织和性能的影响[J]. 钛工业进展, 2010, 27(4):30-33. 17. Ibrahim K M, Mhaede M, Wagner L. Microstructure evolution and mechanical properties of heat treated LCB titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2609-2615. |
3. 毕业设计(论文)进程安排
2016.1.6~2016.1.16 查阅中外文资料,翻译外文资料,参加讨论 2016.2.22~2016.3.6 撰写开题报告,参加开题答辩 2016.3.7~2016.3.16 制定研究方案,熟悉仪器,参加讨论 2016.3.17~2016.4.28 前期的实验研究,结果分析,参加讨论 2016.4.29~2016.5.5 撰写中期报告,参加中期检查答辩 2016.5.6~2016.5.19 后期的实验研究,结果分析,补充计算,参加讨论 2016.5.20~2016.6.13 整理数据,撰写论文,准备答辩,参加毕业论文答辩 |