10kV系统动态无功补偿装置设计毕业论文
2021-03-30 20:33:48
摘 要
电弧炉、电焊机等冲击性负荷大量接入电网严重影响电网供电质量。电能质量及其控制技术是当前电工领域的研究热点。本文研究并设计了基于模糊控制的TCS型动态无功补偿控制器,抑制快速波动性负荷造成的电压波动和闪变。
本文论述了目前电能质量及其控制技术、控制装置的研究进展,分析了静止式无功补偿在电力系统应用中的若干问题,探讨了静止无功补偿器(SVC)在三相对称和不对称、电压电流波形有畸变情况下的平衡控制方法和控制信号检测的方法。
本文对无功控制技术及其发展和应用进行了研究,针对九区图控制法的缺陷,并结合无功控制的实践经验,设计了电压无功综合控制的模糊推理系统。该模糊推理系统的隶属度函数采用三角形隶属度函数,模糊推理采用Mamdani型推理,非模糊化采用的是面积中心法,在设计时使用MATALB为辅助工具进行离线计算。模糊推理系统对电压一无功平面进行模糊分区,减少了由于测量值的微小变化引起运行点在相邻区域之间的震荡,引起不必要的电容投切或电压调节。模糊控制实现电压无功综合控制避免了大量的数学计算,增加了系统的稳定性,减少电容器动作的次数。
介绍一种适合于低压(400V)配电网分散进行无功补偿的低成本晶闸管开关电容器(TSC)装置,它通过检测晶闸管式无触点开关(SCR)两端电压为零作为SCR触发的必备条件,实现了硬件闭锁保护,避免了误触发造成的冲击电流损坏元件,不会发生无功过补偿现象,而且简化了设计,降低了成本。本文设计的控制器以TMS320F2812DPS芯片为核心,加上检测电路(包括采样电路、调理电路、锁相环等)和其它外围控制和驱动电路构成。设计完整的软、硬件系统。充分利用定时器的定时和计数功能,提出了一种交流采样中的频率测量和锁相跟踪方法。该方法硬件简单,可消除电力系统基波频率波动的影响,实现采样频率和信号频率的完全同步。
关键词:TSC,无功控制,模糊控制
ABSTRACT
More and more fluctuant loads such as electric arc furnaces and welders are connected into power networks. Its simply quality becomes badly. Power quality and its control technique are the important research area in electrical engineering nowadays. Based on Fuzzy control, this paper studies and designs TSC-SVC controller to eliminate the voltage fluctuation and flicker.
The development of power quality and its control technique and devices are discussed in this paper. This article analyzes the problems in application of stationary dynamic compensation system.Balance control method and signal detection needed for static var compensator (SVC) control under the conditions of symmetrical and unsymmetrical voltages or currents with or without distortions are described in this paper. Based on the instantaneous power concept the detection method for the required signals such as the root-mean-square value of the voltage and the reactive current, the reactive power and the power factor is developed in detail.
In this thesis a fuzzy control system used in Voltage and Reactive Power auto regulatory devise is designed based on the research of the technology and development and the application of Reactive Power, the default of the nine-zone controlling principle. In the fuzzy system, the member function is triangle function, the fuzzy reasoning is Mamdani method the antifuzzy is centriod method. The software MATLAB is used to calculate the fuzzy system. And the fuzzy system also has the special regular to eliminate the domain-swing between some special phenomena. The fuzzy system control realizes the auto control of Voltage and Reactive Power avoiding the large math calculation, increasing the stability of the system, reducing the number of the action of capacitors.
A new low-cost TSC reactive power compensation device is presented in this paper. It can compensate reactive power in 0.4kV distribution network. This device detects the voltage across the contact less switch based on SCR and when the value of the detected voltage is equal to zero to SCR is triggered. Therefore, the hardware protection is not only protected from rush current caused by mis-triggering SCR, but also the over compensation is avoided. The controller makes up of TMS320F2812DSP chip, detecting circuits including sampling circuit, modulate circuit and phase locked loop and other periphery control and drive circuit. This paper designs a low-voltage SVC model and its software and hardware system. Based on the timing and count function of the timer, A method of frequency measuring and PLL tracking based on AC sampling is put forward in this paper. The method has simple hardware, and it can be used to avoid effect of frequency changing, and to implement the fuly synchronization of the sampling frequency and the signals frequency.
Key words: reactive power control,fuzzy control,TSC
目 录
第1章 绪论 1
1.1 研究背景及意义 1
1.2 国内外无功补偿的发展过程 1
1.3 无功补偿配置的原则 2
1.4 研究内容 3
第2章 模糊控制系统 4
2.1 模糊控制理论的定义 4
2.2 模糊控制理论基础 4
2.2.1 模糊数学理论 4
2.2.2 模糊系统的组成 7
2.2.3 模糊控制器 7
2.3 无功补偿模糊控制器的设计 8
2.3.1 无功控制器的判据 8
2.3.2 模糊推理机的设计 9
2.3.3 模糊推理过程 12
2.4 本章小结 14
第3章 TSC无功补偿技术 15
3.1 无功补偿的基本原理 15
3.2 TSC型无功功率补偿装置 16
3.2.1 TSC基本原理 16
3.2.2 TSC典型装置 17
3.2.3 TSC主电路 18
3.3 TSC控制系统 19
3.3.1 TSC控制系统 19
3.3.2 系统变量的检测及算法 19
3.3.3 控制目标及控制策略 20
3.3.4 触发时刻的选取 21
3.4 本章小结 22
第4章 10kv动态无功补偿方案 23
4.1 补偿系统 24
4.1.1 400V并联电容器组 25
4.1.2 400V投切元件 26
4.1.3 10KV/400V电磁耦合系统 27
4.2 控制系统 27
4.3 动态无功补偿装置的软件设计 29
主程序 29
4.3.1 数据采集模块 31
4.3.2 投切控制模块 34
4.4 本章小结 36
第5章 本文总结 37
参考文献 39
致 谢 42
第1章 绪论
研究背景及意义
随着社会主义经济的发展进步,电力电子技术在社会中的地位越来越高,电力电子技术已经发展成为冲击性负载家电必不可少的组成,电网中需要更多的无功功率,这就导致了电能在传输过程中增加网络损耗及末端电压的下降,因此导致了电力企业的供电质量下降生产成本的增加。因此电力作为不可或缺的存在,如何提高供电设备的利用效率和电网稳定性经济性是必须要解决的问题。无功补偿是一种行之有效的办法。 因为这样不仅能提高设备的供电能力而且显著减低电力系统电压损耗改善电能质量[1],有效提高经济效益。
电力系统的电能的好坏很大程度上通过电压来衡量。如果电力系统中无功补偿不充分,电网电压的安全便难以得到保障。目前而言,用电设备的电容量不断提高。其次,功率因素对于电网也有着重要意义,功率因素的下降会产生电网输电效率的下降和损耗的增加的问题。所以,着力解决无功功率补偿的问题也是电网安全运行和降低损耗的重要课题。