电动汽车动力电池监测装置的研究与设计毕业论文
2021-04-05 10:38:56
摘 要
新能源汽车被列为我国加快培育和发展的七大战略性新兴产业之一。动力电池作为电动汽车的核心技术之一,电池性能指标直接影响整车的安全性、经济性和动力性。对电动汽车动力电池系统中电压、电流和温度的数据采集方法进行深入分析,建立实时的监控对保障电动汽车电池组的安全及使用寿命, 最大限度发挥电池系统效能具有重要作用。
本文设计了一种电动汽车动力电池监测系统,采用分布式结构,由一块主板和多块从板组成。从板包括电压采集模块、电流采集模块、通信模块。电压采集模块通过线性光耦放大电路采集法采集单体电池电压,然后通过TLC2543芯片将得到的模拟值变为数字值。电流采集模块利用DS18B20数字温度芯片采集温度。主板包括电流采集模块和通信模块。电流采集模块通过霍尔电流传感器采集总电流,利用ADC0804芯片对采集的模拟值进行变换。从板与主板都通过CAN控制器SJA1000和CAN收发器与CAN总线连接进行CAN通信。
本文还对电池SOC估算技术进行了研究。通过查阅文献资料,对SOC估算方法有了初步的了解和认识。并且对常见的算法进行了分析和比较。最后选择了改进后的安时积分法作为估算电池的SOC的方法。
最后通过proteus对电路电压采样模块、温度采样模块、电流采样模块进行了仿真,仿真结果表明以上模块的设计方法可行。
关键词:电动汽车动力电池;SOC;CAN总线通信
Abstract
New energy vehicles have been listed as one of the seven strategic emerging industries in China to accelerate the cultivation and development. As one of the core technologies of electric vehicle, the performance index of battery directly affects the safety, economy and power performance of the vehicle. The data acquisition methods of voltage, current and temperature in the power battery system of electric vehicles are deeply analyzed, and the establishment of real-time monitoring plays an important role in ensuring the safety and service life of the battery pack of electric vehicles and maximizing the efficiency of the battery system.
In this paper, a kind of electric vehicle power battery monitoring system is designed. The slave board includes voltage acquisition module, current acquisition module and communication module. The voltage acquisition module collects the single battery voltage through the acquisition method of linear optocoupler amplifier circuit, and then changes the analog value to digital value through TLC2543 chip. The current acquisition module USES DS18B20 digital temperature chip to collect temperature. The main board includes a current acquisition module and a communication module. The current acquisition module collects the total current through hall current sensor, and USES ADC0804 chip to transform the collected analog value. CAN communication is carried out through CAN controller SJA1000 and CAN transceiver.
This paper also studies the battery SOC estimation technology. Through consulting literature, we have a preliminary understanding of SOC estimation method. The common algorithms are analyzed and compared. Finally, the improved ampere-hour integral method is selected as the method to estimate the SOC of the battery.
Finally, the circuit voltage sampling module, temperature sampling module and current sampling module are simulated by proteus. The simulation results show that the design method of the above modules is feasible.
Key Words:Electric vehicle power batteries; SOC; Can field bus communication
目录
第1章 绪论 1
1.1研究的背景和意义 1
1.2 国内外研究现状 1
1.2.1国内研究现状 1
1.2.2 国外研究现状 2
1.3 主要研究内容 2
第2章 动力电池监测系统方案设计 3
2.1动力电池监测系统的功能和要求 3
2.2动力电池监测系统的结构设计 3
2.3动力电池监测系统方案设计: 3
本章小结 4
第3章 SOC算法研究 5
3.1 常见的SOC估算方法 5
3.2 基于安时积分法的改进 6
本章小结 7
第4章 动力电池监测系统的硬件设计 8
4.1电源转换电路 8
4.2从板电路设计 9
4.2.1电压采集电路 9
4.2.2温度采集电路 12
4.3主板电路设计 13
4.3.1电流采集电路 13
4.4通信电路 14
本章小结 17
第5章 动力电池监测系统的软件设计 18
5.1软件设计总体思路 18
5.2主板软件设计 18
5.2.1系统主程序设计 18
5.2.2电流采集子程序设计 19
5.2.3SOC估算子程序设计 21
5.3从板程序设计 22
5.3.1电压采集子程序设计 22
5.3.2温度采集子程序设计 24
5.4通信程序设计 26
5.4.1主节点通信程序设计 26
5.4.2从节点通信程序设计 28
本章小结 29
第6章 结论 30
参考文献 31
致谢 32