层叠式锂离子电池三维热模型研究毕业论文
2021-11-01 21:10:09
摘 要
锂离子电池在使用过程中会出现温度分布不均的情况,而温度分布不均会影响每个单体电池的使用寿命,导致电池损坏乃至安全事故。因此,本文以Comsol软件作为仿真平台,采用有限元分析方法,选用锰酸锂(LiMn2O4)作为电池的正极材料,建立层叠式锰酸锂电池的三维电化学-热耦合模型,对电池的热特性进行仿真研究。
本文首先对电池的电化学特性进行了仿真,通过模拟电池的充放电过程,对电池电压和电池电极平均荷电状态(State of Charge,SOC)的变化情况进行分析,并通过模拟相应充电、放电过程的电解液中电解质浓度变化、电极活性颗粒中心和表面的浓度变化来研究充放电过程的电化学反应实质。在充电过程,正极脱锂,负极嵌锂,正极SOC下降,负极SOC上升,正极电解液中锂离子浓度不断升高,活性颗粒中心的锂离子浓度低于表面锂离子浓度,负极电解液中的锂离子浓度不断降低,活性颗粒中心的锂离子浓度高于表面锂离子浓度;放电过程则相反。
然后,本文通过改变电流倍率,对不同电流倍率情况下电池的整体温升特性、电池表面的温度分布情况进行研究,并且在探究热特性时,本文在热模型中添加了极耳热源,可以同时研究电池极耳上的热传导状况,使电池的仿真效果更加贴近实际。通过仿真发现,电池内部温度分布不均匀,越靠近电池表面中心区域,电池的温度越高;最低温度出现在极耳上,正极耳温度略高于负极耳。
最后,本文根据所得的电池温度分布情况,针对电池组提出一种风冷散热方案,并研究了高倍率电流情况下不同风速时的散热效果,随入风口风速的增大,电池的散热效果更好,且距离入风口距离越近处,散热能力越强,温度越低。本文的研究为电池散热模块的设计和优化提供了一种思路。
关键词:层叠式锂离子电池,锰酸锂,电化学-热耦合,热特性,风冷散热
Abstract
In the process of using lithium-ion batteries, the uneven temperature distribution will affect the service life of each cell, resulting in battery damage and even safety accidents. Based on this, this thesis uses COMSOL software as the simulation platform, uses the finite element analysis method, selects LiMn2O4 as the positive material of the battery, and establishes the three-dimensional electrochemical thermal coupling model of the laminated lithium manganese dioxide battery to simulate the thermal characteristics of the battery.
In this thesis, firstly, the electrochemical characteristics of the battery are simulated. By simulating the charging and discharging process of the battery, the changes of the battery voltage and the State of Charge (SOC) of the battery electrode are analyzed, and the overcharge is studied by simulating the changes of the electrolyte concentration, the concentration of the active particle center and the surface during the corresponding charging and discharging process The essence of the electrochemical reaction of Cheng. In the charging process, the positive electrode is delisted, the negative electrode is intercalated with lithium, the positive electrode SOC is decreased, the negative electrode SOC is increased, the lithium ion concentration in the positive electrode electrolyte is continuously increased, the lithium ion concentration in the active particle center is lower than the surface lithium ion concentration, the lithium ion concentration in the negative electrode electrolyte is continuously reduced, the lithium ion concentration in the active particle center is higher than the surface lithium ion concentration; the discharging process is the opposite.
Secondly, by changing the current multiplier, this thesis studies the overall temperature rise characteristics of the battery and the temperature distribution of the battery surface under different current multiplier. When exploring the thermal characteristics, this thesis adds a polar ear heat source in the thermal model, so that the heat conduction condition on the polar ear of the battery can be studied at the same time, and the simulation effect of the battery is more close to the reality. Through simulation, it is found that the temperature distribution inside the battery is uneven, the closer to the center area of the battery surface, the higher the temperature of the battery; the lowest temperature appears on the polar ear, and the temperature of the positive ear is slightly higher than that of the negative ear.
Finally, according to the temperature distribution of the battery, this thesis proposes an air-cooled heat dissipation scheme for the battery pack, and studies the heat dissipation effect of the battery at different wind speeds under the condition of high power current. With the increase of the wind speed at the air inlet, the heat dissipation effect of the battery is better, and the closer the distance from the air inlet, the stronger the heat dissipation ability and the lower the temperature. The research of this thesis provides an idea for the design and optimization of the battery cooling module.
Key words:Laminated lithium ion battery; lithium manganate,;electrochemical thermal coupling; thermal characteristics,;air cooling and heat dissipation
目 录
第1章 绪论 1
1.1 锂离子电池研究背景和意义 1
1.2 锂离子电池研究的基础 1
1.2.1 结构构成 1
1.2.2 工作原理 4
1.2.3 内部的产热问题 5
1.3 锂离子电池模型特性研究现状 5
1.3.1 等效电路模型 5
1.3.2 纯热模型研究 6
1.3.3 电化学—热耦合模型研究 7
1.4 本文研究的内容 7
第2章 锰酸锂电池三维电化学-热耦合模型的建立 10
2.1 模型建立的基础 10
2.1.1 锂离子电池P2D模型 10
2.1.2 COMSOL有限元分析方法 10
2.1.3 锰酸锂电池电化学-热耦合模型简介 10
2.2 电化学模型建立 11
2.2.1 建立几何模型 11
2.2.2 控制方程及边界条件 12
2.2.3 模型的电化学参数 15
2.3 传热模型建立 16
2.3.1 建立几何模型 16
2.3.2 控制方程及边界条件 16
2.3.3 模型的热参数 18
2.4 电化学—热耦合模型 19
2.5 本章小结 19
第3章 锰酸锂电池热模型特性的分析 20
3.1 电化学模型特性分析 20
3.1.1 电极电位和平均电极荷电状态 20
3.1.2 电解质盐浓度变化 22
3.2 热模型特性分析 25
3.2.1电池温度变化情况 25
3.2.2 电池表面温度分布 26
3.3 本章小结 30
第4章 锰酸锂电池的散热方案 31
4.1 散热结构现状 31
4.2 散热方案仿真 31
4.2.1 散热方案选择 31
4.2.2 风冷散热下的电池组温度分布 33
4.3 本章小结 36
第5章 总结 37
5.1 研究内容总结 37
5.2 研究展望 37
参考文献 38
附录 A 40
附录 B 41
附录 C 42
致 谢 43
第1章 绪论
1.1 锂离子电池研究背景和意义
近年来,随着经济与科技的发展,能源消耗量不断加大,人们的环保意识也不断提高,在节能和减排的压力下,电动汽车的发展成为了必然要求。目前,电动汽车是最具潜力的清洁能源交通工具,动力电池作为电动汽车的核心部件,因锂离子电池优异的综合性能而备受关注,并被看作是未来极具实用化前景的电动汽车储能解决方案之一[1]。
锂离子电池是一种新型的二次能源,其具有可再生、清洁无污染的优点,同时,与传统的镍氢电池、镍镉电池和铅酸电池相比,具有工作电压高、功率密度高、无记忆效应以及自放电率低等优点,逐步成为电动汽车的优先考虑的动力源。但是,锂离子电池在工作过程中,因为其充放电时电化学反应的特点,会产生反应热、欧姆热以及极化热等,使得热量在电池内部积聚,尤其在高倍率充放电的情况下,更是会产生大量的热,使得电池内部温度迅速上升,内部温度由于散热不均而出现局部过热,各部分的温度差异加大,而温度分布不均会影响每个单体电池的寿命,导致锂离子电池的性能下降,甚至会出现热失控的现象导致电池损坏乃至安全事故。因此,为了实现对电池的热管理,必须建立相应的热模型对对电池内部传热现象进行仿真分析。
1.2 锂离子电池研究的基础