无线充电实验系统建立与测试分析毕业论文
2021-11-02 20:47:09
摘 要
随着时代的进步与科技的发展,电子移动产品、家用电器等逐渐成为人们日常生活中不可或缺的基本资源,但是这些产品在给我们生活带来便捷的同时,也带来了一些安全隐患。随着我们使用次数的增多和用户一些过度使用以及不规范使用电子设备都会加速电子设备尤其是电池和充电电源的老化、充电接口的损坏、甚至是充电线的裸露等。各种客观因素促使人们不得不找出更为安全有效的充电方式,后来科学家在实验室里研究出了无线充电技术(WPT),目前无线充电技术(WPT)在电动汽车领域和手机领域获得了广泛的应用和发展。本文以电动汽车无线充电为研究方向。分析谐振拓扑结构,建立磁耦合充电线圈,深入研究无线充电系统参数以及传输特性。
论文首先论述了目前集中主要的无线充电方式的工作原理。重点讲述了磁耦合谐振式无线充电技术,详细介绍了其工作原理和国内外当前发展现状。根据电磁场理论和电路基础对磁耦合谐振式无线充电系统的充电线圈进行参数设计,确定参数后进行实物绕制。随后根据计算结果设计分析硬件电路,包括整流滤波电路、高频逆变电路和BUCK电路,用MATLAB仿真,根据仿真结果验证系统可行性。
在电动汽车无线充电时,由于停车位置是人为的,所以人们不简单将发射端和接收端对的非常准,从而会导致接收线圈和发射线圈的位置在水平方向发生一定距离的偏移,进而影响耦合线圈的耦合系数,降低系统充电效率。针对此问题,本课题结合仿真设计电路图和课题设计要求,搭建了功率为2.7kw频率为85kHz的无线充电系统的实验平台。利用此平台进行了无线充电系统的稳定性测试和水平偏移特性的测试。结果表明本文设计的充电系统功率最高可达81.5%,功率最高可达2.9kw,系统也具有良好的稳定性。验证其具有实用性,为电动汽车无线充电技术的发展提供了一定的参考。
关键词: 电动汽车;磁耦合谐振;无线充电;充电线圈;高频逆变.
Abstract
With the progress of the development of science and technology, electronic mobile products and household appliances have gradually become indispensable basic resources in people's daily life. With the increase in the number of times we use and some users overuse and irregular use of electronic equipment will accelerate the aging of electronic equipment, especially batteries and charging power supply, damage to the charging interface, and even the bareness of the charging cable. Various objective factors have prompted people to find a safer and more effective charging method, namely wireless charging technology (WPT). Now, wireless charging technology (WPT) has been widely used and developed in the field of electric vehicles and mobile phones. This article takes the wireless charging of electric vehicles as the research direction. Analyze the resonant topology, establish a magnetically coupled charging coil, and delve into the wireless charging system parameters and transmission characteristics.
The paper first discusses the working principle of the current main wireless charging methods. It focuses on the magnetic coupling resonance wireless charging technology, and details its working principle and current development status at home and abroad. According to the electromagnetic field theory and circuit basis, the parameter design of the charging coil of the magnetic coupling resonance wireless charging system is carried out, and the physical winding is carried out after the parameters are determined. Then design and analyze the hardware circuit based on the calculation results, including the rectifier filter circuit, high-frequency inverter circuit and BUCK circuit, and use MATLAB simulation to verify the system feasibility according to the simulation results.
In the wireless charging of electric vehicles, it is difficult to align the transmitter and the receiver completely, which will cause the position of the receiver coil and the transmitter coil to shift in the horizontal direction, thereby affecting the coupling coefficient of the coupling coil and reducing the system charging efficiency. In response to this problem, this subject combines the simulation design circuit diagram and the subject design requirements to build an experimental platform for a wireless charging system with a power of 2.7kw and a frequency of 85kHz. Using this platform, the stability test and horizontal offset characteristic test of the wireless charging system were carried out. The results show that the power of the charging system designed in this paper can reach up to 81.5% and the power up to 2.9kw, and the system also has good stability. Verification of its practicality provides a certain reference for the development of electric vehicle wireless charging technology.
Key Words:Electric vehicle; magnetic coupling resonance; wireless charging; charging coil; high frequency inverter;
目录
摘要……………………………………………………………………………………Ⅰ
Abstract………………………………………………………………………………..Ⅱ
第1章 绪论…………………………………………………………………………...1
1.1课题研究的背景及其意义 1
1.2 无线充电技术简介 1
1.3 无线充电技术国内外发展现状 2
1.3.1国外发展现状 2
1.3.2 国内发展现状 4
1.4 本文主要研究内容 5
1.5 本章总结 5
第2章 谐振式无线充电系统电能传输原理研究…………………………………...6
2.1引言 6
2.2 谐振式无线充电系统简介 6
2.3 磁耦合谐振式无线电能传输系统的谐振拓扑分析 7
2.3.1 串联谐振 7
2.2.2 并联谐振 8
2.4 谐振拓扑分析 8
2.5 电路互感模型的分析 9
2.6 系统设计要求 11
2.7 本章小结 12
第3章 线圈的选择与绕制………………………………………………………… 13
3.1引言 13
3.2无线充电线圈的选择 13
3.3线圈不同参数对传输效率的影响 15
3.4 线圈的绕制 16
3.5 谐振电容的选择 16
3.6本章总结 17
第4章 硬件电路的设计和分析…………………………………………………….18
4.1引言 18
4.2整流滤波电路的设计 18
4.2.1整流电路 18
4.2.2 滤波电容 19
4.3 逆变电路设计 21
4.3.1 逆变电路的选择 21
4.3.2 开关管的选择 21
4.3.3 逆变电路的设计与仿真 22
4.4 斩波电路的设计 24
4.5 无线充电系统的仿真分析 25
4.6 本章总结 30
第5章 WPT系统实验台架建立及测试分析……..………………………………. 31
5.1 引言 31
5.2 实验平台的搭建 31
5.2 充电性能测试 34
5.3 水平位移稳定性测试 36
第6章 总结与展望………………………………………………………………… 38
6.1 全文总结 38
6.2 论文的不足与展望 38
参考文献…………………………………………………………………………….40
致谢…………………………………………………………………………………………………….41
第1章 绪论
1.1课题研究的背景及其意义
在如今社会科学技术飞速发展的背景下,电子移动产品、家用电器等逐渐成为人们日常生活中不可或缺的基本资源,但是这些产品在给我们生活带来便捷的同时,也带来了一些安全隐患。随着我们使用次数的增多和用户一些过度使用以及不规范使用电子设备都会加速电子设备尤其是电池和充电电源的老化、充电接口的损坏、甚至是充电线的裸露等。各种客观因素促使人们不得不找出更为安全有效的充电方式,即无线充电技术(WPT),目前无线充电技术(WPT)在电动汽车领域和手机领域获得了广泛的应用和发展。
在电动汽车领域里面,无线充电技术的诞生似乎是必然,其技术投入应用可以说是迫在眉睫。近几年来,各个国家在发展自身经济的同时也意识到环境问题和能源短缺问题,自胡总书记提出科学发展观以来,我国对于新能源的支持越来越多,而电动汽车作为新能源汽车,必然成为未来汽车领域的制造核心和重点发展对象。