适用于现代电网的分布式静止串联补偿器的仿真技术研究毕业论文
2021-11-11 20:23:45
论文总字数:25390字
摘 要
随着当前世界形势的不断复杂变化和我国国民经济的高速健康发展,现代社会对电力供应的安全性和可靠性的要求越来越高,传统电网越来越难以满足用户的电力需求。在此背景下,智能化更高的现代智能电网得以不断发展,并将逐步取代传统电网架构。由于现代智能电网中存在大量的分布式发电设备,所以,为了更好地保证电能质量、满足用户电力需求,如何安全有效地对电力系统进行无功补偿成为了一个十分重要的问题,而分布式静止串联补偿器的研究恰好为该问题提供了一个较为有效的解决方案。
本文首先分析了传统电网中存在的一些问题,在此基础上介绍了现代电网的特点以及国内外发展现状。根据现代智能电网需要解决的问题,分析了分布式静止串联补偿器的功能并对其发展研究过程进行了介绍,指出了分布式静止串联补偿器在现代智能电网中的重要作用。通过对静止同步串联补偿器与分布式静止串联补偿器的工作原理和结构进行分析和比较,进一步得出分布式静止串联补偿器在实际工程应用中存在的一些优缺点。设计并分析了分布式静止串联补偿器逆变器以及主控单元的控制策略,并在 MATLAB 仿真工具中搭建了系统的仿真电路模型(主要包括分布式静止串联补偿器基本电路和控制模块两大部分)进行了仿真验证。在本文仿真模型中,分布式静止串联补偿器逆变器的控制通过SPWM控制技术实现,通过改变调制波的调制深度来调节控制所需的PWM脉冲波形。本文通过对各个仿真实验波形的分析,分别对分布式静止串联补偿器在进行容性无功补偿和感性无功补偿时的系统状态进行了详细介绍和分析。
本文主要研究了适用于现代电网的分布式静止串联补偿器的仿真技术。
研究结果表明:适用于现代电网的分布式静止串联补偿器可以有效地对系统潮流进行动态调节(即对系统进行感性无功补偿或者容性无功补偿),进而提高输电系统的可靠性。
关键词:分布式静止串联补偿器;SPWM控制技术;MATAB仿真;现代电网
Abstract
With the complex changes of the current world situation and the rapid and healthy development of China's national economy, the modern society requires higher and higher security and reliability of power supply, and the traditional power grid is increasingly difficult to meet the power demand of users. Under this background, the modern smart grid with higher intelligence has been continuously developed and will gradually replace the traditional grid architecture. Because there are a large number of distributed generation equipment in modern smart grid, in order to better ensure the power quality and meet the power demand of users, how to compensate the reactive power of power system safely and effectively has become a very important problem, and the research of distributed static series compensator just provides an effective solution to this problem.
This paper first analyzes some problems existing in traditional power grid, and then introduces the characteristics of modern power grid and its development status at home and abroad. According to the problems to be solved in modern smart grid, this paper analyzes the functions of distributed static series compensator and introduces its development and research process, and points out the important role of distributed static series compensator in modern smart grid. By analyzing and comparing the working principle and structure of static synchronous series compensator and distributed static series compensator, some advantages and disadvantages of distributed static series compensator in practical engineering application are further obtained. The control strategy of distributed static series compensator inverter and main control unit is designed and analyzed, and the simulation circuit model of the system (mainly including the basic circuit and control module of distributed static series compensator) is built in MATLAB simulation tool for simulation verification. In the simulation model of this paper, the control of distributed static series compensator inverter is realized by SPWM control technology, and the PWM pulse waveform needed for control is adjusted by changing the modulation depth of modulation wave. In this paper, the system state of distributed static series compensator in capacitive reactive power compensation and inductive reactive power compensation is introduced and analyzed in detail by analyzing the waveforms of various simulation experiments.
This paper mainly studies the simulation technology of distributed static series compensator suitable for modern power grid.
The research results show that the distributed static series compensator, which is suitable for modern power grid, can effectively dynamically adjust the power flow of the system (that is, inductive reactive power compensation or capacitive reactive power compensation is carried out on the system), thus improving the reliability of the transmission system.
Key Words: Distributed Static Series Compensator (DSSC); SPWM control technology; MATAB simulation;Modern power grid
目录
第1章 绪论 1
1.1现代电网的特点及研究现状 1
1.1.1现代电网的特点 1
1.1.2现代电网的国内外研究现状 1
1.2适用于现代电网的分布式静止串联补偿器研究现状 2
1.3分布式静止串联补偿器的研究目的及意义 2
1.4本文研究内容 3
第2章 工作原理及结构 4
2.1 静止同步串联补偿器的工作原理及结构 4
2.2 分布式静止串联补偿器的工作原理及结构 5
2.3 分布式静止串联补偿器与静止同步串联补偿器的比较 6
2.4本章小结 7
第3章 主电路拓扑及参数设计 8
3.1主电路拓扑 8
3.2参数设计 9
3.3本章小结 10
第4章 控制策略 11
4.1 子模块的控制策略设计 11
4.2 主控单元的控制策略设计 12
4.3本章小结 14
第5章 仿真模型的建立及参数选择 16
5.1系统电源、系统负载以及输电线路参数的选择 16
5.2 单个子模块仿真模型的搭建及参数选择 17
5.3控制模块的搭建及其参数选择 17
5.4本章小结 18
第6章 仿真结果分析 19
6.1旁路开关闭合时(0.1s之前)的仿真结果分析 19
6.2旁路开关刚断开时(0.1s-0.5s)的仿真结果分析 21
6.3 对系统进行无功补偿时的仿真结果分析 22
6.3.1 容性无功补偿的仿真结果分析 23
6.3.2 感性无功补偿的仿真结果分析 24
6.4本章小结 26
第7章 总结及展望 27
7.1总结 27
7.2展望 27
参考文献 28
致 谢 30
第1章 绪论
1.1现代电网的特点及研究现状
随着经济社会的发展以及清洁能源发电的应用,传统电网在电网运维、满足供电企业和用户的电力需求方面存在的问题已经越来越明显。在发电环节,传统电网以集中式、化石能源为主,难以满足大量的分布式发电并网的需求。在用电环节,传统电网只能提供单向信息流,电价方案单一,难以满足用户日益多样化的用电需求。与此同时,传统电网没有自动恢复能力、故障时需要人工操作、日常需要定期检修,因此应对故障的反应速度慢,存在电力质量水平低、变动大的问题。综上所述,传统电网必将逐渐被能效性高、灵活性好、自愈能力强、智能化更高的现代智能电网所取代。
1.1.1现代电网的特点
现代电网主要具有以下特点:(1)由较强的超高压系统构成主网架。(2)各电网之间联系较强,供电电压提高,电压等级相对简化。(3)具有足够的调峰、调频、调压容量,能够实现自动发电控制,有较高的供电可靠性。(4)具有相应的安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。(5)具有适应电力市场运营的技术支持系统,有利于各种能源的合理利用。
请支付后下载全文,论文总字数:25390字