一种ITO电极DBD装置设计及放电特性研究毕业论文
2022-01-09 18:01:41
论文总字数:34848字
摘 要
作为产生低温等离子体最常用的方式之一,相较于其他气体放电方式,介质阻挡放电(DBD)有着其独特的优点,因此已经被广泛应用于不同的领域。然而目前同时研究对不同气体、不同的电源参数等条件对放电模式的影响还较少,并且在介质阻挡放电过程中,斑图放电模式或均匀放电模式是如何维持相对稳定的状态以及怎样修改电源参数可以优化这种稳定机制,这些问题都阻碍了科研者们对DBD等离子体不同放电模式下稳定运行机制的确定及其工业方面的运用。
本次论文独立设计了一种透明ITO电极DBD装置来观察底部放电现象,使用了氩气和氦气作为工作气体,并分别改变了外加电压幅值以及电压频率来进行实验。通过电极底部的相机拍摄了不同气体下不同时期DBD放电模式的图片,并且通过对其电学特性以及光学特性的分析,研究了氩氦DBD放电特性。研究表明,在氩气和氦气中,DBD具有类似的电学特性,即随着外加电压或电源频率的增加,传输电荷、总平均功率、气隙放电平均功率、装置的能量效率也在增大。但在放电模式变化上,两种气体展现出了不同之处,氩气DBD放电模式先是由最初的局部均匀放电,随着外加电压的升高,放电区域逐渐变大并向外扩散,放电模式由之前的均匀放电开始向斑图放电过渡,斑图形状开始由六边形过渡到四边形,最后放电区域变为整个电极,大量的放电细丝无规则的散布在区域内,此时放电模式类似于均匀放电模式但并不完全均匀。而氦气DBD放电模式先是由最初的局部丝状放电、再到柱状放电,最后成为布满整个电极的均匀放电。因此相对于氩气,在氦气中更容易实现均匀放电。通过对氦气光谱的分析,发现亚稳态的氦会与杂质分子发生彭宁电离产生大量活性物质,这也是为什么在氦气中更容易实现均匀放电的原因,彭宁电离在其中起到了关键作用。
关键词:等离子体 介质阻挡放电 影响因素 发光特性 光谱特性
Study on the Design and discharge characteristics of DBD device with ITO electrode
Abstract
Dielectric barrier discharge (DBD), one of the most common ways to produce low-temperature plasma, due to its unique advantages compared with other gas discharge methods, has been widely used in different fields. Yet at the same time, research on different conditions such as gas, the power of the different parameters on the influence of firing pattern also is less, and DBD in uniform pattern mode and stability mechanism and parameter optimization is not entirely clear, hindered the DBD plasma determination of different discharge modes and stable operation mechanism and its industrial use.
In this paper, a transparent ITO electrode DBD device was independently designed to observe the discharge phenomenon at the bottom. Argon and helium were used as the working gas, and the applied voltage amplitude and voltage frequency were changed to conduct the experiment. The camera at the bottom of the electrode was used to take pictures of different DBD discharge patterns in different gases, its electrical and optical characteristics were analyzed to study the DBD discharge characteristics. Studies have shown that in argon and helium gas, DBD has similar electrical properties with the increase of applied voltage or power supply frequency, the maximum peak value of pulse current, the transmission charge, the average power and the energy efficiency of the device also increase. However, in terms of the discharge mode changes, the two gases show differences. The discharge mode of argon DBD first starts from the initial partial uniform discharge, then to the later hexagonal and quadrilateral pattern discharge, and finally becomes a pseudo-uniform discharge that covers the whole electrode and contains discharge filaments. The discharge mode of helium gas DBD starts from the initial filaminate discharge, then to the cylindrical discharge, and finally becomes the uniform discharge covering the whole electrode. Therefore, it is easier to realize uniform discharge in helium gas than in argon gas. Based on the analysis of helium spectrum, it is found that metastable helium will produce a lot of active substances by penning ionization with impurity molecules, which is also the reason why it is easier to achieve uniform discharge in helium gas. Penning ionization plays a key role in this process.
Key words: Plasma; Dielectric barrier discharge; Influencing factors; Luminous properties; Spectral characteristics
目录
摘要 I
Abstract II
第一章 绪论 1
1.1 等离子体综述及产生方法 1
1.1.1 等离子体综述 1
1.1.2 低温等离子体的产生方法 2
1.2 研究背景 4
1.3 研究现状 5
1.4 本论文研究的主要内容 10
第二章 实验装置及测量系统 12
2.1 含有ITO电极的DBD装置设计 12
2.2 实验装置及测量系统 15
2.3 实验方法 20
2.4 DBD电气参量计算 21
2.5 本章小结 22
第三章 氩气DBD放电特性的研究 23
3.1 氩气DBD放电模式分析 23
3.2氩气DBD电学特性诊断分析 26
3.2.1 电压-电流特性分析 26
3.2.2 放电功率、能量、转移电荷、能量效率特性分析 27
3.3 纳秒脉冲激励氩气DBD发射光谱特性分析 31
3.4 本章小结 33
第四章 氦气DBD放电特性的研究 35
4.1 氦气DBD放电模式分析 35
4.2氦气DBD电学特性诊断分析 38
4.2.1 电压-电流特性分析 38
4.2.2 放电功率、能量、转移电荷、能量效率特性分析 39
4.3 纳秒脉冲激励氦气DBD发射光谱特性分析 43
4.4 本章小结 45
第五章 总结 47
参考文献 49
致谢 52
第一章 绪论
1.1 等离子体综述及产生方法
请支付后下载全文,论文总字数:34848字