旋转滑动弧等离子体电极结构优化及放电特性研究毕业论文
2022-01-09 18:05:07
论文总字数:27051字
摘 要
旋转滑动弧放电是气体放电的一种形式,可以在常温常压下产生一种介于高温等离子体和低温等离子体之间的温等离子体,兼具二者的特性。由于旋转滑动弧等离子体的化学选择性良好,能量密度高,并且旋转滑动弧放电结构简单,容易控制,所以旋转滑动弧放电的应用十分广泛。因此,研究旋转滑动弧的放电特性以及优化最佳气相参数,对进一步促进其应用技术的发展具有重要意义。
本文首先搭建了旋转滑动弧放电实验平台,然后通过检测系统得到不同气相参数下的电压电流值、放电图像以及光谱图,运用相关理论知识对其进行分析,得出不同情况下的电气特性、发光特性和光谱特性。最后通过横向比较和纵向比较,来优化出最佳气相参数。
研究结果表明,交流旋转滑动弧在放电过程中根据电流信号特征的不同可分为两种滑动模式,即稳定滑动(A-G)模式和击穿伴随滑动(B-G)模式,A-G模式下电流峰值为毫安量级,而B-G模式下的电流峰值为安培量级。当气体流速一定时,随着外加电压的增加,电弧越容易向A-G模式过渡,放电功率和发光强度都和外加电压成正相关的关系,同时旋转滑动弧产生的活性粒子的浓度也随着外加电压的增加而逐渐变大。当外加电压一定时,随着气体流速的上升,一开始电弧逐渐向A-G模式发展,且放电功率也在增加,进而使得活性粒子的浓度逐渐上升,但是增大到一定程度时(当调压器电压为125V,这个值为7L/min),放电稳定性又与气体流速成反比,此时随着气体流速的上升,电弧反而向B-G模式发展,放电功率也在减小,使得活性粒子的浓度越来越小,而发光强度仍与气体流速正相关。
同时,研究发现气体流速对旋转滑动弧放电特性的影响明显大于外加电压对其的影响,并且外加电压与气体流速之间有一个最优配比(调压器电压为125V时,气体流速为7L/min),在这种情况下反应器的性能是最高的。
关键字:旋转滑动弧放电 最佳气相参数 电气特性 发光特性 光谱特性
Structure optimization and discharge characteristics of rotating sliding arc plasma electrode
Abstract
Rotary sliding arc discharge is a form of Gas discharge. It can produce a kind of warm plasma between high temperature plasma and low temperature plasma at normal temperature and pressure. It has the advantages of both. Due to the high energy density and good chemical selectivity of rotating sliding arc plasma, and the simple structure and easy control of rotating sliding arc discharge, the application of rotating sliding arc discharge is very extensive. Therefore, it is of great significance to study the discharge characteristics of rotating sliding arc and optimize the optimal gas phase parameters to further promote the development of its application technology.
At first, this paper builds the rotating gliding arc discharge experiment platform. Voltage and current values, discharge images and spectrograms under different gas phase parameters are obtained by the detection system. Then, the electrical, luminescent and spectral properties under different conditions are achieved by analyzing them with relevant theoretical knowledge. Finally, the optimal gas phase parameters are earned through horizontal comparison and vertical comparison.
The results show that the ac rotating sliding arc can be divided into two sliding modes according to the characteristics of the current signal in the discharge process, namely, the stable arc sliding mode (A-G) and the breakdown sliding mode (B-G). The peak current in the A-G mode is of the order of milliamperes, while the peak current in the B-G mode is of the order of amperes. When the gas flow rate is constant, with the increase of the applied voltage, the arc is easier to transition to the A-G mode. The discharge power and luminous intensity are positively correlated with the applied voltage. At the same time, the concentration of active particles generated by rotating sliding arc also increases with the increase of applied voltage. When the applied voltage is constant, with the increase of gas flow rate, the arc gradually develops to A-G mode at the beginning, and the discharge power also increases, so that the concentration of active particles gradually increases. However, when the voltage increases to a certain extent (when the voltage regulator voltage is 125V, the value is 7L/min), the discharge stability is inversely proportional to the gas flow rate. At this time, with the increase of gas flow rate, the arc develops to B-G mode instead, and the discharge power also decreases, making the concentration of active particles smaller and smaller, while the luminous intensity is still positively correlated with the gas flow rate.
At the same time, it is found that the influence of gas flow rate on the characteristics of rotating sliding arc discharge is obviously greater than that of applied voltage, and there is an optimal ratio between applied voltage and gas flow rate (7L/min when the voltage of regulator is 125V). In this case, the performance of the reactor is the highest.
Key words: Rotating sliding arc discharge;Optimal gas phase parameter;Electrical characteristics;Luminescence properties;Spectral characteristics
目录
摘要 I
Abstract II
第一章 引言 1
1.1 低温等离子体及其产生方式 1
1.2 滑动弧等离子体 3
1.2.1 滑动弧放电的基本原理和放电特性 3
1.2.2 旋转滑动弧放电等离子体 4
1.3 国内外研究状况分析 5
1.4 本文主要研究内容 8
第二章 实验装置及测量系统 10
2.1 旋转滑动弧放电实验平台搭建 10
2.1.1 实验设备 10
2.1.2 旋转滑动弧放电反应器结构 12
2.1.3 实验装置系统 14
2.2 滑动弧放电特性诊断方法 15
2.2.1 电气特性分析 15
2.2.2 光学特性分析 15
2.3 实验参数的测量与计算 15
2.3.1 放电功率计算 15
2.3.2 放电模式分析 16
2.4 本章小结 17
第三章 外施电压对旋转滑动弧放电特性的影响 19
3.1 电气特性 19
3.1.1 放电模式分析 20
3.1.2 击穿电压与弧起到弧灭的时间 21
3.1.3 放电功率 23
3.2 发光特性 24
3.3 光谱特性 26
3.3.1 活性粒子种类 26
3.3.2 发射光谱分析 28
3.3.3 电源电压对活性粒子浓度的影响 29
3.4 本章小结 30
第四章 气体流速对旋转滑动弧放电特性的影响 31
4.1 电气特性 31
4.1.1 放电模式分析 32
4.1.2 击穿电压与弧起到弧灭的时间 33
4.1.3 放电功率 35
请支付后下载全文,论文总字数:27051字