电极结构对大气压介质阻挡放电击穿电压影响研究毕业论文
2022-02-06 18:44:05
论文总字数:22649字
摘 要
介质阻挡放电(Dielectric Barrier Discharge, DBD)可以在大气压下产生稳定的低温等离子体,目前已被广泛应用于臭氧生成、材料表面改性、杀菌消毒、环境保护等生活及工业领域。在诸多描述DBD特性的参数中,击穿电压是一个关键参数。DBD放电形式和放电效率由激励电源和电极结构之间的匹配决定,而击穿电压则是衡量激励电源与电极结构是否匹配的标准之一。大量实验研究结果表明,击穿电压与电极结构和参数具有密切关系。如何在特定激励电源条件下,合理设计电极结构和参数,实现激励电源和电极结构的匹配,保证放电性能和可靠性满足需求对于DBD的实际应用至关重要。目前关于激励电源和电极结构的匹配大多根据经验和实验摸索实现,缺乏科学合理的方法指导二者之间的匹配设计。因此,本课题拟围绕不同电极结构下的DBD击穿电压开展研究,通过实物与仿真实验结合的方式,建立不同电极结构和参数下的电场仿真模型,得到相应的电场分布;结合放电机理确定击穿电压,进而得到不同电极结构下击穿电压与电极结构参数之间的关系,为电极结构优化及其与激励电源的匹配设计提供参考和依据
为了测量不同电极结构形式和气隙对击穿电压的影响,本文搭建了DBD击穿电压测量实验系统。该实验系统由激励源、DBD反应器和放电电压-电流测量单元三部分组成。激励源采用正弦高频电源,输出电压0~10kV可调,频率22kHz。DBD反应器采用三种典型电极结构:板板、针板和管板。放电电压-电流测量单元包括高压探头、电流线圈和示波器。利用该实验系统测量不同电极结构形式和气隙条件下的放电电压-电流波形,确定各实验条件下的击穿电压。该实验结果可作为后续击穿电压仿真结果正确性的验证标准。
为了研究通过仿真手段确定击穿电压的方法,本文建立了板板结构的DBD静态电场仿真模型,并利用该模型确定不同气隙条件下的击穿电压。根据上述实验系统中板板电极结构DBD反应器的几何尺寸和材料,在Comsol多物理场仿真软件中建立该板板电极结构的静态电场仿真模型。以正弦高频电压激励作为边界条件,进行模型求解,得到不同激励电压幅值条件下对应的DBD反应器电场分布。结合空气击穿临界电场强度和反应器电场分布仿真结果,确定击穿电压。改变反应器气隙,得到不同气隙下的电场分布及其对应的击穿电压,进而建立板板电极击穿电压与气隙的关系。将该仿真结果与实验结果对比,验证仿真方法和结果的正确性和合理性。
为了深入研究电极结构形式和尺寸参数对于击穿电压的影响,利用上述方法建立三种电极结构的静态电场仿真模型,通过仿真模型求解建立电极尺寸参数与击穿电压的关系。根据上述实验系统中针板和管板电极结构DBD反应器的几何尺寸和材料,在Comsol多物理场仿真软件中建立不同电极结构的静态电场仿真模型。通过模型求解,确定不同电极结构的电场分布及击穿电压,分析电极结构对于电场分布和击穿电压的影响。利用针板电极仿真模型进一步研究针电极直径和针阵列对于击穿电压的影响。
关键词:介质阻挡放电 电场仿真 气隙 击穿电压
Influence of electrode structure on breakdown voltage of dielectric barrier discharge at atmospheric pressure
ABSTRACT
Dielectric Barrier Discharge (DBD) can produce stable low temperature plasma at atmospheric pressure. It has been widely used in the field of ozone generation, material surface modification, sterilization, environmental protection and other living and industrial fields. In many parameters describing the characteristics of DBD, the breakdown voltage is a key parameter of.DBD discharge. The form and discharge efficiency is determined by the matching between the excitation power and the electrode structure, and the breakdown voltage is one of the standards to measure the matching of the excitation power and the electrode structure. A large number of experimental results show that the breakdown voltage is closely related to the electrode structure and parameters. The matching of the excitation power and the electrode structure to ensure the discharge performance and the reliability meet the demand is very important for the practical application of DBD. At present, the matching of the excitation power and the electrode structure is mostly realized according to experience and experiment, and the matching design between the two methods is not guided scientifically and reasonably. Therefore, this lesson The breakdown voltage of DBD under different electrode structures is studied. Through the combination of physical and simulation experiments, the electric field simulation model under the structure and parameters of different electrodes is established, and the corresponding electric field distribution is obtained. The breakdown voltage is determined by the discharge machine, and the breakdown voltage and the electrode structure parameters under the different electrode structure are obtained. The relationship between the electrode structure optimization and the matching design of the excitation power supply is provided.
In order to measure the influence of different electrode structure and air gap on breakdown voltage, an experimental system for measuring the breakdown voltage of DBD is built in this paper. The experimental system consists of three parts: excitation source, DBD reactor and discharge voltage current measurement unit. The excitation source uses a sinusoidal high-frequency power supply, the output voltage 0~10kV is adjustable, and the frequency 22kHz.DBD reactor is used. Three typical electrode structures: plate plate, needle plate and tube plate. The discharge voltage current measuring unit consists of high pressure probe, current coil and oscilloscope. The experimental system is used to measure the discharge voltage current waveform of different electrode structures and air gap conditions and determine the breakdown voltage under various experimental conditions. The experimental results can be used as a follow-up breakdown. The verification standard for the correctness of the voltage simulation results.
In order to study the method of determining the breakdown voltage by simulation, the DBD static electric field simulation model of plate plate structure is established, and the breakdown voltage under different air gap conditions is determined by this model. According to the geometric size and material of the plate electrode structure DBD reactor in the experimental system, it is built in the multi physical field simulation software of Comsol. The static electric field simulation model of the plate electrode structure is set up. With the sinusoidal high frequency voltage excitation as the boundary condition, the model is solved. The electric field distribution of the corresponding DBD reactor under the conditions of different excitation voltage amplitude is obtained. The distribution of electric field under the air gap and the corresponding breakdown voltage under the air gap are obtained, and the relationship between the electrode breakdown voltage and the air gap is established. The simulation results are compared with the experimental results to verify the correctness and rationality of the simulation methods and results.
In order to study the influence of the electrode structure form and size parameter on the breakdown voltage, the static electric field simulation model of three electrode structures is established by the above method. The relationship between the electrode size parameters and the breakdown voltage is solved by the simulation model. According to the geometry of the DBD reactor of the needle plate and the tube plate electrode structure in the experimental system, the geometry of the electrode structure is solved by the simulation model. In Comsol multi-physical field simulation software, the static electric field simulation model of different electrode structures is established in the multi-physical field simulation software. Through the model solution, the electric field distribution and breakdown voltage of different electrode structures are determined. The needle electrode diameter is further studied by the needle plate electrode simulation model. And the influence of the needle array on the breakdown voltage.
Key words: Dielectric barrier discharge; Electric field simulation; Air gap; breakdown voltage
目 录
摘要 I
ABSTRACT III
目 录 VI
第一章 绪论 1
1.1 课题研究背景及目的意义 1
1.1.1 DBD发生机理 1
1.1.2 空气击穿条件 2
1.2 国内外研究现状 2
1.3 本文主要研究内容 4
第二章 DBD击穿电压测量与分析 5
2.1实验系统介绍 5
2.2 DBD电学特性及击穿电压提取 7
2.2.1击穿电压提取方法 7
2.2.2不同电极结构和参数下的DBD电学特性 7
2.3电极结构和参数对击穿电压影响 9
2.3.1不同电极结构对击穿电压的影响 9
2.3.2气隙对击穿电压的影响 9
2.4 本章小结 10
第三章 基于Comsol电场仿真的平板DBD击穿电压分析 11
3.1 Comsol Multiphysics软件简介 11
3.2 几何模型及边框条件 12
3.2.1 几何模型 12
3.2.2 边框条件 13
3.3 电场仿真结果分析 14
3.4 本章小结 19
第四章 电极结构对击穿电压影响的仿真分析 20
4.1 三种典型电极结构的电场仿真模型建立 20
4.1.1 板板仿真 20
4.1.2 针板仿真 23
4.1.3 管板仿真 25
4.2 不同电极结构对电场分布的影响 26
4.3 电极结构和参数对击穿电压的影响 27
4.4 仿真与实验结果的对比与分析 31
4.6 本章小结 32
第五章 结论 33
参考文献 34
致谢 36
第一章 绪论
1.1 课题研究背景及目的意义
1.1.1 DBD发生机理
介质阻挡放电(DBD)技术是一种新兴科技技术,多应用于材料改性、废水处理、等离子体显示器、臭氧发生器等等工业领域,应用前景十分广阔。相比于原始的低压辉光放电技术,有低成本、高效率等诸多优点。
请支付后下载全文,论文总字数:22649字