有源箝位正反激变换器的研究毕业论文
2022-02-06 18:44:38
论文总字数:20682字
摘 要
这些年来,电能在我们的生产生活科技等方面起到了至关重要的作用。它的来源形式也是多种多样,水能转换成电能,热能转换成电能,核能转换成电等等。而且,电能本身是清洁无污染的,所以它对于地球的环保起着不可或缺的作用。它的来源中风能、太阳能、水能等都是可再生能源。并且,可再生能源发电更是在根源上避免了燃料能源的使用。现如今全球提倡可再生的清洁能源,推动低碳零排放的发展,实现环保发展。同时,由于各种因素的影响,比如环保、节能、节约、绿色等,此时的电能变换器也开始面临着诸如高功率、高概率密度、体积减小等很多危机,但是这也促使着人们在电能变换器这片领域不断地创新,不断地向前推进,就在这时,正反激变换器以一种具备着高效率、高概率密度的变换器,进入了人们的视线,引起了人们的广泛关注。
隔离型升压电源作为一种可实现输入输出隔离并提供直流升压的变换器,在低压转到高压的应用场合得到了广泛应用。诸如很多高端科技领域航空领域、新能源领域都有着很好的发展,所以,我们需要进一步对它进行研究创新,跟随科技时代的发展。
正反激变换器是在正激变换器和反激变换器的基础上不断发展壮大的。一般在正激变换器电路正常工作的时候,由于在变换器一次侧需要有变压器的磁复位绕组,通过它把励磁能量运送到输入端,这个过程中就会产生无功功率和一些损耗,也就导致了变换器效率的降低。因此,如何解决励磁能量传递过程中的损耗问题成了科研人员研究的难题。而在反激变换器电路正常工作运行的时候,在开关管关断的时候和在开关管开通的时候,情况并不一样,在开关管关断的时候,传递能量会先全部储存在变压器里面,然后才会将能量从一次侧传递到二次侧,这个过程就会对变换器的容量大小和输出电流提出要求。在这种情况,如何在拓扑结构上解决变换器容量的大小问题以及解决输出电流脉动的大小问题,也就成了科研人员研究的重点。综上所述遇到的各种问题,开发出一种改良的拓扑结构的正反激变换器电路成为了重点中的重点。
关键词: 电能变换器 隔离型升压电源 反激变换器 正反激变换器
Active Clamp Forward Flyback Converter
Abstract
Over the years, electrical energy has played a vital role in our production and living technology. It also has a variety of sources, such as converting water energy into electricity, converting thermal energy into electricity, and converting nuclear energy into electricity. Moreover, electrical energy itself is clean and pollution-free, which plays an indispensable role in protecting the global environment. Its sources include wind, solar and hydropower, all of which are renewable energy sources. In addition, renewable energy generation is the root cause of avoiding the use of fuel energy. Today, the world promotes renewable clean energy, promotes the development of low-carbon zero-emissions, and realizes the development of environmental protection. At the same time, due to many factors such as environmental protection, energy conservation, energy conservation, and green, power conversion companies are also beginning to face a series of crises such as high power, high probability density, and emission reduction, but this also motivates people. Continuous innovation in the field of power converters continues to move forward. At this point, forward flyback converters have entered the eyes of people with high-efficiency, high-probability-density converters. People are widely concerned.
Isolated booster power supply as a kind of converter that can achieve input and output isolation and provide DC boost, has been widely used in the application of low voltage to high voltage. For example, a lot of high-end technology fields such as aviation and new energy fields all have very good development. Therefore, we need to further research and innovate it and follow the development of the technology era.
Forward flyback converters are constantly growing on the basis of forward and flyback converters. Normally, when the forward converter circuit works normally, since the transformer's magnetic reset winding is needed on the primary side of the converter, the excitation energy is sent to the input terminal through it. This process will generate reactive power and some losses.
This leads to a reduction in the efficiency of the converter. Therefore, how to solve the problem of loss in the process of excitation energy transfer has become a research problem for researchers. In the normal operation of the flyback converter circuit, when the switch is turned off and when the switch is turned on, the situation is not the same. When the switch is turned off, the transmitted energy is stored in the transformer first. Then, the energy will be transferred from the primary side to the secondary side. This process will require the size of the converter and the output current. In this case, how to solve the problem of the size of the converter and solve the problem of output current ripple in the topology structure has become the focus of researchers. In view of the various problems encountered above, the development of an improved flyback converter circuit topology has become the focus of the key.
key words:Power converter Isolated boost power supply Flyback converter Forward flyback converter
目录
摘要 .......Ⅰ
第一章 绪 论 1
1.1 课题提出的背景 1
1.2 课题提出的意义 2
第二章 正激变换器和反激变换器 3
2.1 综述 3
2.2 单管正激变换器的原理 4
2.3 各种正激变换器的特点 5
2.4 单管反激变换器的原理 5
2.5 各种反激变换器的特点 6
第三章 有源箝位正反激变换器 7
3.1有源箝位缓冲电路的组成 7
3.2软开关的实现 10
3.3 有源箝位正反激变换器的原理图 11
3.4 正反激变换器原理分析 11
第四章 有源箝位正反激控制策略 17
4.1开关变换器的控制方式 17
4.2 电压型控制开关变换器的组成和工作原理 17
4.3电压控制型开关变换器和电流控制型开关变换器的一些对比 18
第五章 Saber实验仿真和分析 20
5.1 Saber实验各元器件参数计算 20
5.2 Saber实验仿真和分析 21
第六章 总结和展望 23
6.1全文工作总结 23
6.2后续工作展望 23
参考文献 24
致 谢 27
请支付后下载全文,论文总字数:20682字