电力系统故障外文翻译资料
2022-12-08 11:26:10
Faults on power system
Each year new designs of equipment bring about increased reliability of operation. Nevertheless, equipment failures and interference by outside sources occasionally result in faults on electric power system. On the occurrence of power from the generating stations to the loads may be unsatisfactory over a considerable area, and if the faulted equipment is not promptly disconnected from the remainder of the system, damage may result to other pieces of operating equipment.
A fault is the unintentional or intentional connecting together of two or more conductors which ordinarily operate with a difference of potential between them. The connection between the conductions may be by physical metallic contact or it may be through an arc. At the fault, the voltage between the two parts is reduced to zero in the case of metal-to-metal contacts, or to a very low value in case the connection is through an arc. Currents of abnormally high magnitude flow the network to the point of fault. These short-circuit currents will usually be much greater than the designed thermal ability of the conductors in the lines or machines feeding the fault. The resultant rise in temperature may cause damage by the annealing of conductors and by the charring of insulation. In the period during which the fault is permitted to exist, the voltage on the system in the near vicinity of the fault will be so low that utilization equipment will be inoperative. It is apparent that the power system designer must anticipate points at which fault may occur, be able to calculate conditions that exist during a fault, and provide equipment properly adjusted to open the switches necessary to disconnect faulted equipment from the remainder of the system. Ordinarily it is desirable that no other switches on the system are opened, as such behavior would result in unnecessary modification of the system circuits.
A distinction must be made between a fault and an overload. An overload implies only that loads greater than the designed value have been imposed on system. Under such a circumstance the voltage at the overload point may be low, but not zero. This undervoltage condition may extend for some distance beyond the overload point into the remainder of the system. The currents in the overloaded equipment are high and may exceed the thermal design limits. Nevertheless, such currents are substantially lower than in the case of a fault. Service frequently may be maintained, but at below-standard voltage.
Overloads are rather common occurrence in homes. For example, a housewife might plug five waffle irons into the kitchen circuit during a neighborhood party. Such an over-load, if permitted to continue, would cause heating of the wires from the power center and might eventually start a fire. To prevent such trouble, residential circuits are protected by fuse or circuit breakers which open quickly when currents above specified values persist. Distribution transformers are sometimes overloaded as customers install more and more appliances. The continuous monitoring of distribution circuits is necessary to be certain that transformer sizes are increased as load grows.
Faults of many types and causes may appear on electric power systems. many of us in our homes have seen frayed lamp cords which permitted the tow conductors of the cord to come in contact with each other. When this occurs, there is a resulting flash, and if breaker or fuse equipment functions properly, the circuit is opened.
Overhead lines, for the most part, are constructed of bare conductors. These are sometimes accidentally brought together by action of wing, sleet, trees, cranes, airplanes, or damage to supporting structures. Overvoltages due to lightning or switching may cause flashover of supporting or from conductor to conductor. Contamination on insulators sometimes results in flashover even during normal voltage conditions.
The conductors of underground cables are separated from each other and from ground by solid insulation, which may be oil-impregnated paper or a plastic such as polyethylene. These materials undergo some deterioration with age, particularly if overloads on the cables have resulted in their operation at elevated temperature. Any small void present in the body of the insulating material will result in ionization of the gas contained therein, the products of which react unfavorably with the insulation. Deterioration of the insulation may result in failure of the material to retain its insulating properties, and short circuits will develop between the cable conductors. The possibility of cable failure is increased if lightning or switching produces transient voltage of abnormally high values between the conductors.
Transformer failures may be the result of insulation deterioration combined with overvoltages due to lightning or switching transients. Short circuits due to insulation failure between adjacent turns of the same winding may result from suddenly applied overvoltages. Major insulation may fail, permitting arcs to be established between primary and secondary windings or between a winding and grounded metal parts such as the core or tank.
Generators may fail due to breakdown of the insulation between adjacent turns in the same slot, resulting in a short circuit in a single turn of the generator. Insulation breakdown may also occur between one of the windings and the grounded steel structure in which the coils are embedded. Breakdown between different windings lying in the same slot results in short-circuiting extensive sections of machine.
Balanced three-phase faults, like balanced three-phase loads, may be handled on a lineto-neutral basis or on an equivalent single-phase basis. Problems may be solved either in terms of volts, amperes, and ohms. The handling of faults on single-phase lines is of course identical to the method of handling three-phase faults on an
剩余内容已隐藏,支付完成后下载完整资料
电力系统故障
每年新设计的电力设备都使系统的可靠性不断提高,然而,设备的使用不当以及一些偶然的外在因素均会导致系统故障的发生.发生故障时,电流、电压变得不正常,从电厂到用户的送电在相当大的区域不令人满意。此时若故障设备不立即从系统中切除的话,则会造成其他运行设备的损坏。
故障是由于有意或无意地使两个或更多的导体相接触而造成的。到体之间是有电位存在的,而这种接触可能是金属性接触,也可能是电弧引起的。如果是前者造成的故障,则两部分导体之间电压会降低为零;若为后者,则电压变得很低,超常的大电流经过网络流至故障处。此短路电流通常会大大超出导线以及供电发电机的热承受能力,其结果,温度的升高会导致导体烧毁或绝缘体焦化。在允许的期限内,最靠近故障处的电压会变得很低,致使用电设备无法运行。显然,系统设计者必须事先考虑到故障可能发生在什么地方,能够推测出故障期间的各种情况,提供调节好的设备,以便驱动为将故障设备切除所必需断开的开关能够跳闸。通常希望此时系统无其他开关打开,否则会导致系统线路不必要的修改。
过负荷与故障是两个概念。过负荷仅指施加于系统的负荷超过了设计值。发生这种情况时,过负荷处的电压可能很低,但并等于零。这种电压不足的情形可能会越过过负荷处蔓延一定距离,进而影响系统其他部分。过负荷设备的电流变大而超过预定的热极限,但是这种情况比发生故障时的电流要小。此时,供电虽往往能维持,但电压较低。
过负荷的情况经常在家里发生,例如请街坊邻居聚会时,女主人可能将五个华夫饼干烘烤器的插头同时插入厨房的插座,诸如此类的过负荷倘若不能迅速处理的话,就会造成电力线发热甚至酿成火灾。为了避免这种情况发生,须采用保险丝或断路器来保护住宅区电路免受损坏。断路器会在电流超出预定值时迅速切断电路。当用户安装的用电器增加时,也会超过变压器负荷能力,因此有必要不时地监视配电线路以确保在负荷增加时变压器的容量也相应增加。
电力系统会发生各种类型,由各种原因引起的故障。我们在家里看到过破损的照明灯电线,使得其两根导线相触,并会发出弧光。如果此时断路器或保险丝能够正常工作,见分晓电路能被自动切断。
大部分架空明线是用裸线架设的,有时由于风、雪、或大树、起重机,飞机及支撑物的损坏等因素会使导线偶然碰到一起。由雷电或开关瞬变过程引起的过电压会在支撑物或导体之间产生电弧,即使在电压正常的情况下,绝缘材料的污染也回引起电弧。
通常采用油浸电缆纸或聚乙烯一类固体塑料绝缘材料将埋地电缆中的导线与导线和导线与地隔开。这些绝缘材料会随着时间的流失而老化,尤其是在过负荷引起高温下运行的时候更是如此。绝缘材料内的空隙会造成气体的电离,其生成物对绝缘不利。绝缘材料老化回引起绝缘性下降而导致导线短路。电缆故障的可能性会因雷电或开关瞬间引起的导线的电压骤然变高而增加。
变压器故障可能是由绝缘老化、加上雷电、开关瞬变过程导致的过电压造成的。同一绕组相邻线圈之间由于绝缘问题造成的短路可能是由于突然遇到外加高电压所致。绝缘失败会在一次绕组与二次绕组之间或绕组与接地金属部件(如铁芯或变压器外壳)之间产生电弧。
发电机故障可能是由于同一槽中相邻线圈之间绝缘被破坏而造成的,其结果会导致发电机匝内短路。绝缘损坏也可能发生在某一绕组与定子铁芯的接地钢结构之间。同一槽内不同绕组之间的绝缘损坏会导致电机大范围短路。
像处理平衡三相负荷一样,处理平衡三相故障也是依照基于由火线到零线的电路或等效单相电路的原则进行。可以通过电压、电流和电阻的规律求解问题。当然,单相线路上故障的处理方法也可用于在单相等效电路下三相故障的处理中。
电压互感器
电压互感器与电压表、功率表、电能表、功率因数表、频率表。同步检测装置和同期设备、保护和调节继电器以及自动化断路器的失压和过压调闸线圈一起使用。只要仪表的总电流不超过互感器的设计的补偿要求,一个互感器可以同时供多个仪表使用。
通常,电压互感器繁荣容量设计为200VA电压互感器的误差有两个,称为变比误差和相角误差。对于任何电压,这些误差中由于励磁电流而引起的部分是恒定的。通过选择最佳质量的铁心和低磁场强度下运行,可以将这个误差减到最小。这些误差中由于负荷电流引起的部分直接随着负荷变化,并且可以通过绕组电阻的减小来使其最小化。
需要对电压互感器在额定电压下的铁芯损耗进行补偿。当运行在其他电压时,无论电压高低,都会产生误差。总的来讲,当使用电压为额定电压的50%~110%时,这些误差都不会超过0.15%。电压互感器不允许应用于电压超过其额定电压10%的电路。
电压互感器的二次侧端子不允许短路。如果其二次侧持续短路的话,将在二次绕组中产生巨大电流,从而烧毁绕组。为了防止系统中电压互感器电路持续短路,一个认可的常用措施是在电压互感器的一次侧串连接入一个电阻器和熔断器(保险)。电阻器的选择是将电流限制到约20~40A,而熔断器的选择是按照能断开这样的电流来设计的。在正常运行状况下,流过电阻器的仅仅是电压互感器的小的一次侧电流,并且他们引起的电压降落是可忽略的。
电流互感器
电流互感器与电流表、功率表、功率因数表、电能表、补偿装置、保护和调节继电器以及断路器的跳闸线圈一起使用。一个电流互感器可在不超过其设计和补偿值的范围内运行。
电流互感器串联于电路,并且在二次侧连接仪表数量是固定的。线电流的增加或减小需要二次侧电压降落相应的上升或下降,从而强制二次侧电流流过表计负荷的阻抗。因此,产生这个电压的铁心中的磁通也将随着一次侧电流上升或下降。
连接与电流互感器二次侧电路的仪表是串联接入的,以便二次侧电流流过每一个仪表。随着仪表的增加,就需要较高的电压来强制电流流过这些仪表。这要求在铁芯中具有较大磁场密度。一个较高的磁场密度将增大铁芯损耗和励磁电流,因此造成变比误差和相角误差增大。因此,为了保证一定的精确度,需要对每一个电流互感器所允许带的仪表数设置一个极限。
一次侧负载运行时,电流互感器的二次侧电流不允许开路。如果必须要断开仪表的话,应首先将二次侧断路。如果二次侧电路开路的话,在端子之间将产生电位差,这对于任何接近或接触表计和表头的人员都将是危险的。引起这个高电位差的原因时:当二次侧电路开路时,所有的一次侧安匝都有效的用于产生铁芯的磁通,而正常中只有总安匝中的小部分用于产生铁芯磁通。事实上,而磁侧电压的波形上升达到波峰并产生最大值,危险被放大。在这种情况下所产生的大磁通还会永久性的改变磁状况和铁芯,从而损害互感器的精确度。
避雷器
保护输电设备的一个方法就是使用避雷器,用于这个目的的避雷器有两种类型:有效间隙(碳化硅)避雷器和无间隙(氧化锌)金属氧化物避雷器。
碳化硅避雷器
有效间隙避雷器的两个主要部分是火花间隙和非线性电阻。早期的一种设计是平板间隙的避雷器,今天在一些中压供电网中还仍然得到使用,而在高压电网中,特别是在超高压电网中(300~750kV),通常更普遍使用的是磁吹火花间隙的避雷器。它主要包括三个部分:火花间隙、放电电阻和一个能监测通过火花间隙的电压分布的分级系统。
氧化锌避雷器
这种避雷器的材料是被均匀混合,形成晶粒,经过特殊过程在温度1100~1350℃时烧结。使用氧化锌材料的无间隙避雷器的特性是:随着电压增大其电阻值迅速减小。为了保持系统绝缘受到的应力尽可能的小,一个好的过电压保护系统或者一个避雷器应该满足下列要求:
(1)在它的运行寿命中,即使在污染的情况下,或在电网可能出现的大能量的重复放电后,它必须能承受系统的正常的相对地电压;
(2)它必须能承受由姐弟故障和其他的系统过渡状态造成的短时过电压而不被破坏,并且这些过电压对大地放电不会导致接地故障;
(3)能断开续流电流;
(4)它的能量吸收能力必须满足这种情况,即在最严重的操作过电压和短时过电压下,其部件的温度也不能升高到散热允许的设定值;
(5)它必须维持尽可能低的保护水平。
最新开发的氧化锌避雷器具有优异的非线性特性、能量吸收能力和保护功能,能满足上面的要求。
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[27910],资料为PDF文档或Word文档,PDF文档可免费转换为Word