碳钢在典型环境下的近场动力学腐蚀模型的初步研究毕业论文
2021-03-19 21:40:27
摘 要
缝隙腐蚀是最为重要、最为复杂的一种局部腐蚀形式,是发生在两个连接物之间的狭小缝隙处的腐蚀。碳钢由于力学性能良好且成本较低,被广泛用作海洋开发设施和设备材料。碳钢长期在海水这一类含有侵蚀性氯离子的溶液中非常容易发生缝隙腐蚀,且由于缝隙腐蚀形成的固态产物会堆积在缝隙口,导致缝隙腐蚀具有隐蔽性,所以缝隙腐蚀往往不易监测到,可能会造成结构的突然失效,对经济和安全带来极大的损失。所以,研究碳钢在海水环境中的腐蚀规律和影响因素显得尤为重要。
本文先根据现有的缝隙腐蚀机理给出了缝隙腐蚀的经典模型和控制方程,将缝隙腐蚀模型简化为二维腐蚀模型,以包含缝隙在内的方形304不锈钢试样为研究对象,用1mol/LNaCl溶液来模拟海水溶液作为电解质,采用基于键的近场动力学(PD)方法来研究缝隙腐蚀在海水中的损伤演化,以传统的扩散控制方程为基础,用物质点处的浓度特征来描述该物质点的特性,引进扩散键来描述物质点之间的连接,通过扩散键,离子从高浓度物质点处向低浓度物质点处扩散。并结合菲克定律推导得到了二维缝隙腐蚀的近场动力学公式,初步建立了以扩散为主导的缝隙腐蚀问题的近场动力学模型。
基于建立的缝隙腐蚀近场动力学模型,本文用Fortran语言编写了相应的计算程序,模拟了缝隙腐蚀过程中金属离子浓度的分布,根据金属离子的浓度引进了腐蚀损伤指标的描述,得到了相应的缝隙腐蚀损伤情况, 并研究了缝隙宽度、固体扩散系数对缝隙腐蚀的影响。结果表明缝隙底部的腐蚀最为严重。缝隙溶液中Cl离子随缝隙深度的变化而变化,越接近缝隙底部,Cl离子浓度越大,在缝隙底部的浓度大约是本体溶液的7倍,与实验结果吻合。
关键词:缝隙腐蚀;CCS理论;扩散;腐蚀损伤;微观通量
ABSTRACT
Crevice corrosion is one of the most important and the most complex form of local corrosion, which occurs in the narrow crevices between two joints. Carbon steel is widely used as marine development facilities and equipment because of its good mechanical properties and low cost. And carbon steel is susceptible to crevice corrosion when staying in seawater which containing aggressive chloride ions very long. The solid product formed from crevice corrosion will accumulate in the crevice mouth, leading to the concealment of the crevice corrosion, thus the crevice corrosion is often difficult to monitor, which may result in catastrophic failure of structure and cause great losses to the economy and security. Therefore, it is very important to study the corrosion regularity and effecting factors of the carbon steel in seawater.
In this paper, we first give the classical model and control equation of crevice corrosion according to the existing mechanism of crevice corrosion. The crevice corrosion model is simplified to a two-dimensional corrosion in this paper. We study the square 304 stainless steel sample containing a gap and use the Peridynamic method to study the damage evolution of crevice corrosion in seawater by using 1mol/LNaCl solution to simulate the seawater solution as electrolyte. Based on the traditional diffusion control equation, the characteristics of the material point are described with the concentration characteristics at the material point. The diffusion bond is introduced to describe the connection between the material points. Through the diffusion bond, ions spread from the high concentration of material points to the low concentration of material points. And the Peridynamic formulation of two - dimensional crevice corrosion is deduced by combining Fick's law. The peridynamic model of the diffusion-oriented crevice corrosion problem is established preliminarily.
Based on the established peridynamic model of crevice corrosion, a Fortran program was developed. The distribution of metal ion concentration during crevice corrosion was simulated using the program. A corrosion damage index is introduced using the concentration of metal ions, and the corresponding damage to the crevice corrosion is obtained. The influences of different solid diffusion coefficients and crevice width on crevice corrosion damage are also analyzed. It is shown that the most serious corrosion occurs at the bottom of the crevice. The Cl ion in the solution increases with the depth of the crevice. Near the bottom of the crevice, the Cl ion concentration is about 7 times the bulk solution, which is consistent with the experimental results.
Keywords: crevice corrosion; CCS theory; diffusion; corrosion damage; micro-flux
目录
第1章 绪论 1
1.1 课题背景 1
1.2 国内外研究现状 1
1.2.1 引言 1
1.2.2 缝隙腐蚀机理的研究 2
1.2.3 缝隙腐蚀的影响因素分析 3
1.2.4 存在的问题 4
1.3 本文的主要研究内容 4
第2章 缝隙腐蚀的近场动力学模型 6
2.1 引言 6
2.1.1 缝隙腐蚀概述 6
2.1.2 缝隙腐蚀的几何简化模型 7
2.2 经典框架下缝隙腐蚀的数学模型 8
2.2.1 控制方程 8
2.2.2 边界条件 9
2.3 缝隙腐蚀的近场动力学模型 10
2.3.1 概述 10
2.3.2 建立近场动力学公式 11
2.3.3 缝隙腐蚀的损伤 12
2.4本章小结 13
第3章 缝隙腐蚀近场动力学模型的计算格式及程序实现 14
3.1 近场动力学公式的离散 14
3.2 近场动力学公式的时间迭代 15
3.3 程序实现 15
3.4 算例验证 16
3.5粒子间距及邻域大小的选取 17
3.5.1 粒子间距的选取 18
3.5.2 邻域尺寸的选取 18
3.6 本章小结 19
第4章 缝隙腐蚀结果及影响因素分析 20
4.1缝隙腐蚀结果 20
4.1.1 腐蚀损伤随时间的发展情况 20
4.1.2 金属浓度分布及相应的腐蚀损伤情况 21
4.1.3 缝隙内Cl离子浓度变化 24
4.2影响因素分析 24
4.2.1 缝隙尺寸对缝隙腐蚀的影响 24
4.2.2 固体扩散系数对腐蚀损伤结果的影响 26
4.3 本章小结 30
第5章 总结与展望 31
5.1 总结 31
5.2 展望 31
参考文献 32
致谢 34
第1章 绪论
课题背景
当今世界,海洋工程建设发展迅猛,随着陆地石油的减少,海洋石油的开采成为人类对能源开发的新目标。由于碳钢具有良好的力学性能而且成本较低,所以目前海洋石油开发设施和设备所使用的材料主要是碳钢。碳钢长时间在含有侵蚀性离子(如氯离子)的海水中,腐蚀不可避免。国家海洋腐蚀防护工程技术研究中心主任侯保荣院士表示[1],我国每年因腐蚀造成的经济损失占国民生产总值的3.34%。除了造成经济上的损失,腐蚀对结构构件的安全也会造成很大的威胁,是导致工业设备、各种基础设施破坏和报废的主要原因。因此,研究碳钢在海水环境中的腐蚀规律和机理,找到评估腐蚀损伤的方法以及有效的防止腐蚀的措施,对于保证我国海洋工程建设的安全性与可靠性、延长海洋构筑物的使用寿命以及我国海洋资源开发都具有很大的现实意义。
碳钢在海洋这一类典型环境下的腐蚀形式主要有三种:均匀腐蚀、点腐蚀和缝隙腐蚀。其中缝隙腐蚀是最为重要和复杂的腐蚀形式。缝隙腐蚀的重要性和复杂性体现在缝隙腐蚀的过程,目前普遍认为的缝隙腐蚀过程分为两个阶段:
(1)缝隙腐蚀初期:由于缝隙狭小,缝隙内部与外界的物质交换受限,缝隙内部的还原反应逐渐消耗缝隙内的溶解氧,缝隙内外形成氧浓差电池,导致缝隙内部阳极金属溶解加快,产生大量金属阳离子,金属阳离子水解产生更多的H离子,为了维持电中性,侵蚀性阴离子(如Cl离子)不断向缝隙内部迁移,使得缝隙内的电解质更具有侵蚀性,继而导致金属钝化膜被破坏。