登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 轮机工程 > 正文

活塞环表面织构对缸套-活塞环摩擦磨损性能的影响毕业论文

 2020-02-19 09:09:52  

摘 要

本文主要用缸套-活塞环切片作为研究对象,通过研究在不同载荷下不同形式的表面织构的活塞环对于缸套-活塞环的改善及减摩作用,经过设计试验,可以通过其试验所得数据,综合对比,得出在何种工况下,何种形式的表面织构表现最优,本文的研究意义在于通过试验及分析,证实表面织构的减摩作用,阐释表面织构的减摩机理,并且测出各种形式表面织构的适用工况,为实船上内燃机运行提供直接的依据,对于研究表面织构改善摩擦磨损性能影响有着重要意义。

本论文的研究中心是活塞环表面织构对缸套-活塞环摩擦磨损性能的影响,针对这一研究中心,共设计了四种形式(原始、圆形、椭圆、方形)的活塞环表面织构,并通过激光打标机在活塞环表面加工,再利用往复式摩擦磨损试验机,设计三种不同载荷的运行工况(200N、400N、600N),共计十二组试验,通过安装在往复式摩擦磨损试验机上的摩擦力传感器及接触电阻传感器得到数据,研究其摩擦力,摩擦系数及接触电阻,并通过表面形貌测量仪测量分析其表面形貌,然后选取相应的特征参数进行分析。

通过综合分析相关参数,研究试验结果,可以发现:载荷为400N时,圆形、方形、椭圆形这三种形式的表面织构所对应的缸套-活塞环摩擦系统的摩擦系数分别降低了17.98%、13.96%、1.13%;载荷为600N时,三种形式的表面织构所对应的缸套-活塞环摩擦系统的摩擦系数分别降低了34.92%、19.7%、34.88%,结合摩擦系数、接触电阻及表面形貌特征参数分析,圆形表面织构的活塞环在建立油膜的性能方面表现最优,同时,在中重载荷的运行工况下,其减摩性能也是最优的,所以圆形表面织构的活塞环可以在实船柴油机上应用。

关键词:活塞环;表面织构;摩擦磨损;摩擦学

Abstract

In this paper, the cylinder liner-piston ring section is mainly used as the research object. Through the research on the improvement and friction reduction effect of the piston ring of different forms of surface texture under different loads on the cylinder liner-piston ring, after the design test, the test results can be obtained. The data, comprehensive comparison, which under what conditions, what kind of surface texture performance is the best, the significance of this paper is to verify the surface texture of the friction reduction through experiments and analysis, to explain the reduction of surface texture The mechanism of the friction and the applicable working conditions of various forms of surface texture are provided, which provides a direct basis for the operation of the internal combustion engine on the ship, and is of great significance for studying the influence of surface texture on the improvement of friction and wear performance.

The research center of this paper is the influence of the surface texture of the piston ring on the friction and wear performance of the cylinder liner-piston ring. For this research center, four forms (original, circular, elliptical, square) piston ring surface weave are designed. The structure is processed by the laser marking machine on the surface of the piston ring, and then the reciprocating friction and wear tester is used to design three different load operating conditions (200N, 400N, 600N). A total of twelve sets of tests are installed. The frictional force sensor and the contact resistance sensor on the friction and wear tester obtained data, studied the friction force, friction coefficient and contact resistance, and measured the surface topography by surface topography measuring instrument, and then selected the corresponding characteristic parameters for analysis.

By comprehensively analyzing the relevant parameters and studying the test results, it can be found that the friction coefficient of the cylinder-piston ring friction system corresponding to the three types of surface textures of circular, square and elliptical is reduced by 17.98 when the load is 400N. %, 13.96%, 1.13%; when the load is 600N, the friction coefficient of the cylinder liner-piston ring friction system corresponding to the three forms of surface texture is reduced by 34.92%, 19.7%, 34.88%, respectively, combined with friction coefficient, contact Analysis of resistance and surface topography parameters, the circular surface texture of the piston ring is the best in the performance of the oil film, and at the same time, under medium and heavy load operating conditions, its anti-friction performance is also optimal, so the circle Shaped surface textured piston rings can be used on real ship diesel engines.

Key words: Piston ring; surface texture; friction and wear; tribology

目 录

第1章 绪论·································································1

1.1 背景及研究意义·························································1

1.2 缸套-活塞环的摩擦学系统················································1

1.3 表面织构改善摩擦学性能的原理···········································2

1.4 表面织构摩擦性能研究概述···············································2

1.4.1 表面织构技术的研究应用···········································2

1.4.2 表面织构技术发展现状·············································3

1.5 本文研究的内容及意义···················································4

第2章 试验设备及试验方案··················································5

2.1 试验设备·······························································5

2.1.1 摩擦磨损设备·······················································5

2.1.2 激光打标机·························································5

2.1.3 表面轮廓仪·························································6

2.2 试样的制备·····························································7

2.3 试验方案设计···························································9

2.4 本章小结·······························································9

第3章 活塞环表面纹理对摩擦副的摩擦磨损性能影响分析·························10

3.1不同表面织构活塞环对摩擦副摩擦磨损性能的影响···························10

3.1.1 摩擦副的摩擦系数分析············································10

3.1.2 摩擦副的表面形貌分析············································11

3.1.3 接触电阻分析····················································13

3.2 不同运行工况条件对摩擦副摩擦磨损性能的影响····························14

3.2.1 摩擦副的摩擦系数分析············································14

3.2.2 摩擦副的表面形貌分析············································16

3.2.3 接触电阻分析····················································17

3.3 综合分析·····························································19

3.4本章小结······························································20

第4章 全文总结与展望······················································21

4.1主要结论······························································21

4.2 研究展望······························································21

参考文献···································································23

致谢·······································································25

  1. 绪论

1.1背景及研究意义

随着时代的发展与科技的进步,内燃机在各个领域的应用越来越广泛,而缸套-活塞环这一摩擦副作为内燃机中最为重要的摩擦副,其性能的重要性自然不言而喻,活塞环作为缸套内密封的重要部件,其工作条件十分恶劣,不仅承受着高温高压的气体压力、往复惯性力,又受到活塞的横向振动冲击等,运动状态十分复杂,导致缸套-活塞环摩擦副的润滑条件十分复杂,导致缸套-活塞环摩擦副的润滑条件极差,摩擦损失巨大,因此改善缸套-活塞环的摩擦性能有十分重要的意义[1]。而就在近几年慢慢进入人们视线的就是表面织构技术,表面织构可以明显的降低摩擦系数、改善润滑油膜情况、改善摩擦磨损的性能,也因此,针对表面织构改善摩擦磨损性能的研究越来越多[2-5]

在这个大背景之下,通过研究表面织构来改善摩擦磨损性能已经成为重中之重,如本文开头所提,表面织构形式的不同,其产生的作用效果、减摩表现等也有很大的不同,所以如何通过合理试验的方法,研究不同形式的表面织构对缸套-活塞环摩擦磨损性能的影响,使其能发挥最佳效果,具有重大意义。

1.2 缸套-活塞环的摩擦学系统

缸套-活塞环是内燃机中最重要的摩擦配副,也是内燃机的核心配件,在内燃机运行过程中起到了密封、控油、导热和支撑的作用,但其工况条件极其恶劣,不仅受气体压力、环自身弹力、往复运动的惯性力、环与缸套之间的摩擦力,还承受着燃烧产生的高热,所以保证缸套-活塞环之间的适配性能是最重要的课题之一,其中,缸套与活塞环之间的摩擦磨损是对此摩擦配副性能影响最大的因素,通过科学有效的机械加工方法使其摩擦磨损性能得到提高,改善其润滑效果,成为了时下的热点。

缸套-活塞环之间的运动形式属于典型的滑动摩擦形式[6]。尤其是活塞环,其在整个摩擦学系统中的运动形式十分多变,包括了轴向运动、径向伸缩、周向旋转等循环运动。尤其是在系统运动的上下止点处,由于换向过程的冲击,会使活塞环磨损加剧,使系统的气密性、导热及刮油、布油作用降低。当转速增加时,由于摩擦面的油温上升且粘度下降,油膜厚度会不断降低;当负荷增加时,会加剧摩擦面间的磨损,燃烧附生物也会增多,从而使磨损加剧。尤其是大型低速船用柴油机的缸套-活塞环系统,磨损更大,油膜厚度减小,可能会造成漏气、燃烧不完全,严重的可能会使活塞环断裂,进而影响到内燃机的整体运行,甚至会造成内燃机的损坏。

缸套-活塞环的工作环境是既定的,可以针对改善其摩擦学特性的方向去探讨研究,从油膜厚度、摩擦力和磨损特征方面进行研究,这也是本论文试验的主要研究方向,通过试验,获得相对应的数据,进行数据分析,综合研究如何改善这一摩擦学系统的摩擦磨损性能。

1.3 表面织构改善摩擦学性能的原理

表面织构(Surface Texture),即在摩擦副表面加工出具有一定尺寸的、规则排列的凹坑或者微小的沟槽点阵[7],经研究发现,光滑表面的摩擦磨损性能及润滑性能要比带微孔阵列的表面性能差,摩擦面的表面织构化能够很好的增加流体动压效应,Tonder[8]发现了表面织构化产生流体动压效应的原因:表面织构会产生类似Rayleigh轴承的阶梯效应;表面织构阻碍压力区滑油的流动。这是目前研究比较深入的方向。另外对于表面织构产生“二次润滑”及容纳磨损颗粒的理论也已经形成成熟的体系,胡天昌等[9]通过对试验样品的织构化处理,分析表面织构参数对摩擦磨损性能的影响,得出了在干摩擦条件下,经表面织构化处理的样品摩擦系数高于未处理的样品,磨损率低于未处理样品,SEM显示了微坑槽起到了储存磨屑的作用;在贫油润滑条件下,经表面织构化处理样品的摩擦系数、磨损率均低于未处理样品,Stribenck曲线表明经过表面织构化的样品在实验条件下均处于油膜流体润滑状态,说明微坑槽起到了储存润滑油并通过“二次润滑”作用补充了油膜的完整性。综合上述研究成果,可知道表面织构可以借由流体动压效应、二次润滑及储存磨屑的机理总结其改善摩擦学性能的作用:捕获磨屑、磨粒,减少表面犁沟的产生;作为储油器给摩擦面提供二次润滑,减少滑油的使用量,降低摩擦系数;减少摩擦面积,增加承载能力;激光加工表面织构时,会使表面硬化,提高耐磨性。以上就是表面织构改善摩擦学性能的原理。

1.4 表面织构摩擦性能研究概述

1.4.1表面织构技术的研究应用

近几年,由于表面织构具有极其强大的减摩性能,被广泛应用于机械制造(刀具、轴承、齿轮等)、计算机硬盘,内燃机等方面,邢佑强等[10]在运用激光技术在陶瓷刀具表面加工不同的表面织构纹理,发现相对于未织构化刀具,纳米织构陶瓷刀具能减小刀具表面磨损,改善刀具的切削性能。针对表面织构技术应用的研究越来越热门,尤其是针对内燃机的应用研究更是一大热点,万轶[11]等以缸套-活塞环为应用研究对象,通过往复式摩擦试验研究织构化表面沉积固体润滑剂对缸套-活塞环的摩擦磨损性能影响,发现织构化复合镀层可以明显改善摩擦副的摩擦磨损性能,并且相比于未织构化摩擦副,摩擦系数降低约0.2,磨损率下降50%。严东生等[12]把表面织构技术运用于模拟活塞环/缸套的平面摩擦副,采用模拟实验的方法,通过正交实验对表面织构的参数进行优化,最终获得大量实验数据,得出由研磨微电解加工法在小试件表面进行表面微小凹坑阵列的质量较好,加工效率较高,加工经济性好,凹坑所占的面积率最优水平为5%,凹坑深度的最优水平为10微米,凹坑直径最优水平为200微米。

1.4.2 表面织构技术发展现状

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图