发动机缸盖热-机耦合应力与疲劳分析毕业论文
2021-05-11 21:08:41
摘 要
随着发动机的发展,机体结构越来越紧凑。同时,由于涡轮增压、发动机电子控制等技术的兴起,发动机的强化程度也越来越高,其部件承受的热负荷和机械负荷也随之增加。作为发动机机体及燃烧室的重要组成部分,缸盖在发动机工作过程中火力面一侧承受着高温燃气的直接冲击,缸盖冷却腔一侧与温度较低的冷却液接触,导致缸盖纵向存在较大的温度梯度和热应力。此外,缸盖还承受着连接螺栓的预紧力、进排气门座圈和导管的过盈装配力以及燃气爆发压力等机械负荷,工作环境十分恶劣。因此,缸盖的热与机械强度研究一直是发动机零部件设计优化中的关键课题。
基于以上问题,本文以某重型六缸天然气发动机气缸盖为分析对象,利用HyperMesh建立了有限元分析模型。然后利用有限元分析软件ABAQUS分别计算了气缸盖的温度分布、热应力场、热装配应力和热-机耦合应力,并对计算结果进行分析。本文主要内容如下:
⑴将厂商提供的几何模型导入前处理软件HyperMesh对缸盖模型进行一定简化,并选择合适的网格类型和参数对其进行离散化。同时对螺栓进行适当简化、引入简化机体,建立有限元分析模型。
⑵根据相关热力学知识和换热经验公式确定了热计算边界条件,并通过计算得到缸盖温度场。
⑶ 根据所得温度场结果进一步计算得到缸盖自由膨胀状态下的热应力分布。接着将温度场结果作为热载荷,同时考虑缸盖受到的螺栓预紧力和燃气爆压等机械载荷。采用间接耦合法进行热-机耦合计算,得到缸盖的热-机耦合应力分布情况。其中,在进行热应力场计算时,将其近似为稳态热应力,既保证了计算精度,又提高了计算效率。
⑷计算结果表明,气缸盖火力面鼻梁区存在着温度和应力集中,易发生疲劳破坏,对其进行再设计或优化时应重点考虑。另外,热-机耦合应力中,对缸盖应力分布影响占主要部分的是热应力,降低缸盖工作负荷重点是降低其热负荷。最后,基于前述分析,本文提出了降低缸盖应力的建议。
关键词:气缸盖;有限元;热-机耦合;鼻梁区;温度场;应力场
Abstract
With the development of the engine, the body structure is more and more compact. At the same time, because of the rise of electronic control technology and highly turbo charge, the enhanced-degree is becoming higher and higher. As a key part of the combustion chamber, the fire decks were impacted with high temperature gas directly while the parts above the cooling jacket were contacted with cooling liquid during the process, which lead to great temperature gradient and thermal stress in vertical. In addition, the cylinder head also need to bear mechanical load during the working-process, such as the pre-tension of joint bolt, interference assembly force and combustion gas-pressure. In other words, it works in the poorest working condition. Therefore, the study of thermal and mechanical strength of the engine especially the cylinder head has been a key issue in the design and optimize of engines.
In this paper, we just take the cylinder head of a six-cylinder heavy-duty natural gas engine as analyze object. Firstly, the FEM-model of the cylinder head was built by using HyperMesh software. Then the distribution of temperature, the stress field and the coupling stress field of the cylinder head were calculated with finite element analysis software ABAQUS. Then the results are analyzed. The main contents of this paper are as follows:
⑴ In order to get the finite element model, importing the geometry model of cylinder head provided by enterprise into HyperMesh. Firstly, the models are simplified, then building meshes by choosing proper mesh type and parameter.
⑵The heat transfer boundary conditions were decided based on thermodynamics theory and relevant heat exchange experience formula. And the temperature distribution of head is gained by calculating.
⑶Further calculation were carried to get the thermal stress distribution of head without other-constraints according to the result of the temperature field. Then the temperature field is considered as thermal load, at the same time, consider pre-tension and maximum combustion gas pressure as the mechanical load to calculate the distribution of thermal-mechanical coupling stress. Besides, in order to improve the calculation accuracy and efficiency, thermal stress field was regarded as steady-state field during the calculation of the thermal stress field.
⑷The results shows that there are temperature and stress concentration around the valve-bridge region, therfore it should make a special consideration in diesel design.What’s more, thermal stress field accounts for the major part of thermal-mechanical stress field of the cylinder head, the focus of reducing the working load on cylinder head is reduce the thermal load.Finally,based on the analysis above,this paper proposed a way which can reduce the stress and improve the structure of cylinder head.
Key Words:cylinder head;FEM; thermal-mechanical coupling;valve-bridge region; temperature field; stress field;
目 录
第1章 绪论 1
1.1 研究背景及意义 1
1.2 国内外研究现状 2
1.2.1 缸盖热-机耦合国外研究现状 2
1.2.2 缸盖热-机耦合国内研究现状 3
1.2.3 疲劳寿命预测国外研究现状 4
1.2.4 疲劳寿命预测国内研究现状 5
1.3 本文主要研究内容及技术方案 6
第2章 缸盖热-机耦合数值模拟理论基础 8
2.1 有限元基础理论 8
2.1.1 有限元简介 8
2.1.2 有限元分析软件简介 8
2.2 热分析理论 9
2.2.1 热量传递的三种方式 9
2.2.2 (稳态)温度场及三类边界条件 10
2.3 热弹性理论 11
2.4 强度理论 11
2.5 热-机耦合应力计算理论 13
第3章 缸盖组有限元模型 14
3.1 缸盖组实体几何模型的建立 14
3.1.1 发动机技术参数 14
3.1.2 缸盖几何模型 14
3.1.3 缸盖材料 15
3.2 缸盖组有限元离散模型的建立 15
3.2.1 网格划分与装配 15
3.2.2 边界条件及约束 19
3.2.3 分析步 20
第4章 发动机缸盖有限元计算及分析 22
4.1 缸盖温度场计算及分析 22
4.1.1 缸盖温度场计算热边界条件 22
4.1.2 缸盖温度场计算结果及分析 23
4.2 缸盖热应力场计算分析 26
4.2.1 缸盖热应力场计算边界条件 26
4.2.2 缸盖热应力场计算结果及分析 26
4.3 缸盖热装配应力场分析 28
4.3.1 缸盖热装配应力场计算边界条件 28
4.3.2 缸盖热装配应力场计算结果及分析 29
4.4 缸盖热-机耦合应力场分析 30
4.4.1 缸盖耦合应力场计算边界条件 31
4.4.2 缸盖耦合应力场计算结果及分析 31
4.5 结构改进措施 33
第5章 全文总结及展望 35
5.1 全文总结 35
5.2 展望 35
参考文献 37
致谢 40
第1章 绪论
1.1 研究背景及意义
内燃机是一种将燃料燃烧时放出的热能转变为机械能的热能动力机械,因燃料的燃烧是在发动机气缸内部完成的,故称为内燃机。自第一台内燃机于1876年被奥托创制以来,极大地促进了整个工业的快速发展,同时内燃机本身也得到巨大的发展与进步。经过近一个半世纪的发展,内燃机凭借其热效率高、转速和功率覆盖范围广等优势在社会生产生活的各个领域都得到了广泛的应用,例如工程机械、农用机械、交通运输中的车辆、船舶和小型电站等。在上述领域尤其在车辆领域,内燃机更是占有绝对的统治地位[1]。
气缸盖作为内燃发动机的关键零件,其主要作用是通过缸盖连接螺栓的预紧,与活塞顶部及气缸套内壁一同组成发动机的燃烧空间。在发动机工作过程中,缸盖水腔壁面与冷却液直接接触,其温度较低,而缸盖火力面与高温燃气直接接触,温度较高,两者温差在缸盖内部产生较大热应力。同时缸盖火力面承受燃烧室内高压燃气冲击作用,在周期作用下,缸盖中的各个节点发生周期性的振荡,很容易在应力集中区域产生疲劳现象[2]。首先,结构零部件中会形成疲劳裂纹源,此时处于裂纹成核阶段。接着,随着工作循环的增加,开始进入微观裂纹扩展阶段,当裂纹扩展到一定程度形成可见宏观裂纹时零部件就发生了失效[3]。