旋涡泵又称侧流道泵、再生泵、摩擦泵等, 与尺寸、转速相同的离心泵相比, 旋涡泵结构紧凑, 具有陡降的特征曲线, 在小流量工况下能达到较高扬程, 近年来被越来越多地应用于航空航天和医疗等高端领域。但旋涡泵的缺点是效率较低, 因此对旋涡泵内部流动机理深入研究, 找到提高水力性能的途径是目前研究的重点方向之一[1~3]。当比转速小于40时, 单级旋涡泵的扬程与相同流量的多级离心泵相当, 但效率一般只有10%~40%, 其中Crewdson在1956年报道, 将旋涡泵吸力面倒圆, 并将压力面出口角变为135°时, 能使旋涡泵效率达到50%[4]。
目前对旋涡泵的研究集中在旋涡泵的外特性预测和结构优化, 对于旋涡泵内部流动机理的研究尚不够深入。本文在前人研究的基础上, 对某型旋涡泵进行CFD仿真, 以求找出旋涡泵内纵向旋涡与旋涡泵外特性参数的内在联系
1.1国外研究现状
首先对旋涡泵进行研究工作的是德国科学家里台尔[14]出旋涡泵工作过程假说:流道中的转动液体每一质点上均有离心力, 由于流道中液体的圆周速度比叶轮中慢, 产生的离心力不同, 所以叶轮内的液体上所作用的离心力要比流道中液体上所作用的离心力大, 引起了液体的圆环形运动 (称为纵向旋涡) .工作介质依靠纵向旋涡在流道内流经叶轮好几次, 每经过一次叶轮, 扬程就增加一次.因此, 旋涡泵的扬程高于离心泵的扬程. 里台尔的假说是对旋涡泵工作原理进行研究的基础.在此基础上, 后来的学者把旋涡理论发展为纵向旋涡加径向旋涡理论[15]
1932年德国学者希米德亨和苏联的学者们几乎同时用动量交换假说来解释旋涡泵工作过程中大量的能量损失。
另外, 有日本学者认为, 旋涡泵的工作过程是依靠叶轮的粗糙表面, 对流道内的流体作相对运动引起的摩擦剪切应力实现的.叶轮外缘“粗糙度”越大, 作用于液体的摩擦力越大, 泵扬程越高.径向小叶片与流道内的液体相对运动产生紊流摩擦力, 从而把原动机的能量传递给流道内的液体.叶轮上的叶片在流道内多次重复产生较大紊流摩擦力, 因此旋涡泵具有较高的扬程[16]因而旋涡泵也称为摩擦泵. 目前, 对于旋涡泵工作原理的解释还是集中为两大类:一是摩擦湍流原理, 二是动量交换原理.
1.2国内研究现状
在国内, 旋涡泵研究起步较晚, 其工作原理研究已经形成了两大解释.且研究旋涡泵的学者很少, 因此对工作原理的研究没有很大发展. 国内浙江大学的朱祖超[17]对旋涡泵和高速旋涡泵的设计进行了大量研究, 建立了以效率和工作范围为主线的小流量旋涡泵的理论设计方法, 通过实验分析, 表明较大的流道面积可以拓宽泵的工作范围, 较大的径向间隙和轴向单边间隙会降低泵的扬程和效率, 并且研制了轴向入口旋涡泵.浙江理工大学的谢鹏[18]采用加大流量法对小流量高扬程离心旋涡泵进行了水力设计, 提高了样泵的抗汽蚀性能.合肥通用机械研究院的陈世亮[19]屏蔽式旋涡泵并进行了试验研究.屏蔽式旋涡泵没有泄漏, 运行平稳, 增加了旋涡泵的应用范围. 如前所述, 旋涡泵的流道形状有圆形、梯形、矩形等, 流道位置又可分为外围流道、外围双侧流道、外围单侧流道、双侧边流道和单侧边流道等.叶轮也分为闭式叶轮、开式叶轮以及新型的半开式叶轮.不同叶轮和不同流道组合的旋涡泵的种类就非常多了, 系统地实验研究全部类型旋涡泵的不同特性是一个工作量巨大的工程, 所以国内外学者对旋涡泵的实验研究都是针对某一方面展开的, 主要是通过对影响旋涡泵性能的过流部件进行研究, 以得到较为理想的设计参数和设计方法.国外学者对旋涡泵叶片的造型作了系统实验[20,21,22], 某些泵当叶片受压面 (正面) 的出口角约为135°, 同时把吸力面 (背面) 的叶片边倒圆, 使其形成尖的叶片尖端时, 泵的效率可达到50%, 比普通叶片造型的旋涡泵的高出了许多.Meakhail[23]提出了一个新的理论模型, 并根据此模型设计了一种带扭曲叶片的叶轮, 明显提高了旋涡泵的扬程和效率.
在国内, 江苏大学的沙毅[24]等提出利用数值分析方法拟合出闭式旋涡泵叶轮直径、叶片数及流道面积的经验系数水力计算公式.郑州大学的张明成[25]等通过对旋涡泵中叶轮与泵体间动压场的研究, 并根据侧隙泄漏量和功率损耗量,研究得到了叶轮与泵体之间的最佳间隙取值范围.