激光直接制造三维石墨烯及其传感器应用毕业论文
2021-11-04 20:50:34
摘 要
英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯之后,越来越多的科研人员参与到石墨烯的制造与应用中来,石墨烯已经广泛应用到航空航天、储氢材料、生物医学、传感器等领域。
本论文简要介绍了激光诱导石墨烯的基本过成,利用三维石墨烯的特性,研究如何将其应用到传感器中尤其是车用传感器,得到反应更加灵敏的传感器,使行车更加安全可靠。通过软件有限元分析,研究石墨烯的压阻效应,并与传统的应变片式电阻对比,说明了石墨烯用于压力传感器的可行性。并将石墨烯压力传感器与传统的MEMS压力传感器,说明了石墨烯用于制作传感器的优越性。通过实验验证了石墨烯传感器的导电率与制造参数的关系,研究了石墨烯的纵向和横向应变。
研究发现石墨烯电导率受纵向应变的强烈影响,而在横向应变下则保持基本恒定。 纵向应变的施加增加了导电颗粒之间的间隔,并减少了颗粒之间的接触点数量,从而导致电阻增加。石墨烯压阻效应的特性以及灵敏度与所施加压差的关系证明了石墨烯的高性能。实验发现基于石墨烯的传感器的响应度比MEMS传感器大约5-45倍。同时,石墨烯传感器的面积缩小了25倍。说明了石墨烯用于压力传感器的优越性。
关键词:石墨烯,压力传感器,半导体,复合材料
Abstract
After the physicists Andrei Gaim and Konstantin Novoselov of the University of Manchester in the United Kingdom successfully separated graphene from graphite by micromechanical stripping, more and more researchers participated in the graphene In manufacturing and application, graphene has been widely used in aerospace, hydrogen storage materials, biomedicine, sensors and other fields.
This paper briefly introduces the basic process of laser-induced graphene. Using the characteristics of three-dimensional graphene, it is studied how to apply it to sensors, especially automotive sensors, to obtain more sensitive sensors and make driving safer and more reliable. Through the finite element analysis of l software, the piezoresistive effect of graphene was studied, and compared with the traditional strain gauge resistance, the feasibility of graphene as a pressure sensor was demonstrated. The graphene pressure sensor and the traditional MEMS pressure sensor illustrate the superiority of graphene for making sensors. The relationship between the conductivity of the graphene sensor and the manufacturing parameters was verified through experiments, and the longitudinal and lateral strains of the graphene were studied.
The study found that the electrical conductivity of graphene is strongly affected by the longitudinal strain, while it remains substantially constant under the lateral strain. The application of longitudinal strain increases the spacing between conductive particles and reduces the number of contact points between particles, resulting in increased resistance. The characteristics of graphene piezoresistive effect and the relationship between sensitivity and applied pressure difference prove the high performance of graphene. Experiments have found that the responsivity of graphene-based sensors is about 5-45 times that of MEMS sensors. At the same time, the area of the graphene sensor has been reduced by 25 times. Explained the superiority of graphene for pressure sensor.
Keywords: graphene, pressure sensor, semiconductor, Composite material
目录
摘 要 I
Abstract II
第1章 绪论 1
1.1石墨烯历史回顾 1
1.2石墨烯的主要制造方法 1
1.3激光制造三维石墨烯方法 2
1.3石墨烯的物理特性 4
1.4石墨烯的应用 6
1.5国内外研究现状 8
1.6研究思路与章节安排 8
1.7本章小结 9
第2章仿真建模 10
2.1石墨烯电阻与传统电阻对比 10
2.1.1金属应变片电阻 10
2.1.2 三维石墨烯电阻 10
2.1.3 对比总结 11
2.2半导体压力传感器工作原理 11
2.3 仿真建模结果讨论 12
2.4与传统的MEMS挤压膜压力传感器对比 16
第3章 实验过程 22
3.1石墨烯的制造 22
3.2电子显微镜定向研究 22
3..3石墨烯电导率与制造参数的函数关系 23
3.4感应器的纵向(长度)和横向(宽度))应变 26
3.5本章小结 27
第4章 总结与展望 28
4.1论文工作总结 28
4.2工作展望 28
致 谢 30
参考文献 31
第1章 绪论
石墨烯(Graphene)是一种二维碳纳米材料,由碳原子以sp²杂化轨道六角形蜂窝晶格组成[1]。石墨烯具有优异的光学,电气和机械性能,已在微流体,可再生能源设备,传感器,水净化和许多其他领域中得到了广泛的应用。它被认为是未来的革命性材料[2]。它具有所有不可渗透膜中最低的质量密度和抗弯刚度。这些特性使石墨烯成为纳米机械传感器的合适材料。
1.1石墨烯历史回顾
2004年,英国曼彻斯特大学的两位科学家Andre Geim和Konstantin Novoselov通过高定向热解石墨将石墨片剥离下来,然后将石墨片通过双面胶粘到一种特殊的胶带上。撕开胶带后,石墨片就分成了两部分。一直这样做,薄片变得越来越稀。最终,他们得到了仅由一层碳原子二维石墨烯。
从那时起,出现了制备石墨烯的新方法,然而,在发现石墨烯之前,大多数物理学家认为,热力学波动只允许在绝对零度下存在任何二维晶体。所以石墨烯的发现立即让凝聚态物理学术界大吃一惊。虽然在理论和实验都认为理想的二维结构在有限温度下不可能稳定存在,但这两位科学家却可以在实验中制备单层石墨烯[3]。
1.2石墨烯的主要制造方法
传统制备石墨烯的方法