登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 能源与动力工程 > 正文

动力电池包轻量化材料与结构设计毕业论文

 2021-11-04 21:04:48  

摘 要

随着汽车生产和拥有量的持续增加,资源和环境产生巨大压力,特别是反复出现的雾霾、能源危机以及提高汽车能量利用率和保护环境的迫切需要,电动汽车日益受到重视。电池包是电动汽车工业的一项基本技术,直接影响电动汽车的可持续性和安全性能。作为电池的主要载体,电池包在维护电池完整性和防止外部干扰方面发挥着关键作用。为了满足纯电动汽车的要求,需要成倍增加电池包的数量,致使纯电动汽车的整车质量比同级别燃油汽车高10%~20%,极大地影响了电动汽车的续航能力与整车动力性能。因此,动力电池包的轻量化是电动汽车发展的必然趋势。

本文主要研究动力电池包轻量化材料与结构设计,通过选用两种轻量化材料铝合金和镁合金,并对比传统Q235钢研究其轻量化效果;建立电池包三维模型并对电池包箱体进行拓扑优化;对动力电池包进行碰撞仿真分析及结果对比,得出最优轻量化材料以及拓扑优化结构。

(1)本文研究的动力电池包轻量化材料,包括铝合金以及镁合金材料,对比传统Q235钢,研究并阐述这些材料的性能特点。

(2)根据动力电池包的设计要求并参考常见动力电池包的实际尺寸,确定本文所研究的电池包结构并运用CATIA三维软件进行建模。

(3)简化动力电池包模型,再导入ANSYS Workbench中,对动力电池包箱体进行拓扑优化。将3种材料分别赋予到两种动力电池包模型中进行碰撞仿真分析对比。基于碰撞结果,对电池包应力和电池包位移进行分析,评价不同材料的的强度和刚度,得出最优轻量化材料及拓扑优化的效果。最后实验结果表明:拓扑优化后的铝合金材料电池包位移最小,仅有1.65mm;电池包碰撞过程中应力最小,仅有285.4Mpa,由此可见其强度和刚度最好,对内部电池的保护效果最好。

关键词:电池包;轻量化;碰撞分析;拓扑优化

ABSTRACT

With the continuous increase of automobile production and ownership, the resources and environment are under great pressure, especially the recurring smog, energy crisis and the urgent need to accelerate the improvement of automobile efficiency and environmental protection. Battery pack is a basic technology in the electric vehicle industry, which directly affects the sustainability and safety performance of electric vehicles. As the main carrier of the battery, the battery pack plays a key role in maintaining the battery integrity and preventing external interference. In order to meet the requirements of pure electric vehicles, the number of battery packs needs to be doubled. As a result, the quality of the whole vehicle of pure electric vehicles is 10% ~ 20% higher than that of the same grade of fuel vehicles, which greatly affects the endurance capacity of electric vehicles and the power performance of the whole vehicle.Therefore, the lightweight power battery pack is the inevitable trend of the development of electric vehicles.

This paper mainly studies the lightweight material and structure design of the power battery package. By selecting two lightweight materials, aluminum alloy and magnesium alloy, and comparing the lightweight effect of traditional Q235 steel, the paper mainly studies the lightweight material and structure design of the power battery package.The 3d model of the battery pack was established and the topology of the battery pack was optimized.The collision simulation analysis and result comparison of the power battery pack are carried out to obtain the optimal lightweight material and topology optimization structure.

(1) The lightweight materials of the power battery package studied in this paper, including aluminum alloy and magnesium alloy, are compared with traditional Q235 steel to study and describe the performance characteristics of these materials.

(2) According to the design requirements of the power battery pack and the actual size of the common power battery pack, the structure of the battery pack studied in this paper was determined and CATIA 3d software was used for modeling.

(3) Simplifying the power battery package model and import it into ANSYS Workbench for topological optimization of the power battery package.Three kinds of materials were added to two kinds of power battery pack models for collision simulation analysis and comparison.Based on the collision results, the stress and displacement of the battery pack are analyzed, the strength and stiffness of different materials are evaluated, and the results of the optimal lightweight material and topology optimization are obtained.Finally, the experimental results show that: after topology optimization, the aluminum alloy battery package has the smallest displacement, only 1.65mm, the maximum tensile strength and the maximum stress of the battery package is 285.4Mpa, so its toughness is the best and the protection effect of the internal battery is the best.

Keywords: Battery pack; Lightweight; Collision analysis; Topology optimization

目录

摘 要 I

ABSTRACT II

第1章 绪论 1

1.1 课题研究目的和意义 1

1.1.1 研究目的 1

1.1.2 研究意义 1

1.2 国内外研究现状 1

1.2.1 国外电池包研究现状 1

1.2.2 国内电池包研究现状 2

1.3 课题研究内容及方案 3

1.3.1 研究内容 3

1.3.1 研究路线流程图 4

1.3.2 研究方案 4

第2章 电池包轻量化研究方法 5

2.1 引言 5

2.2 动力电池包碰撞性能要求 5

2.3 CATIA软件简介 5

2.4 ANSYS Workbench简介 6

2.5 本章小结 6

第3章 电池包箱体轻量化设计 7

3.1 引言 7

3.2 电池包轻量化材料选取 7

3.3 动力电池包几何结构模型 8

3.4 电池包箱体拓扑优化 10

3.5 本章小结 11

第4章 电池包碰撞仿真分析 12

4.1 引言 12

4.2 建立动力电池包碰撞模型 12

4.2.1 赋予材料属性 13

4.2.2 划分网格 14

4.2.3 定义边界条件并施加载荷 15

4.3碰撞仿真分析结果对比 16

4.3.1 电池包位移变化对比 16

4.3.2 电池包应力变化对比 23

4.4 本章小结 24

第5章 总结与展望 25

5.1研究内容总结 25

5.2不足与展望 25

致谢 26

参考文献 27

第1章 绪论

1.1 课题研究目的和意义

1.1.1 研究目的

动力电池包轻量化的研究,主要是通过选用轻量化材料和改善电池包的结构来实现。但是轻量化设计同时也会影响到电池包结构的安全性能,因此在保证动力电池包的安全性能的前提下实现电池包的轻量化非常关键。

本文研究的动力电池包轻量化材料,包括铝合金以及镁合金材料,对比传统Q235钢,研究并阐述这些材料的性能特点。根据动力电池包的设计要求并参考常见动力电池包的实际尺寸,确定本文所研究的电池包结构并运用CATIA三维软件进行建模。简化动力电池包模型,再导入ANSYS Workbench中,对动力电池包箱体进行拓扑优化。将3种材料分别赋予到两种动力电池包模型中进行碰撞仿真分析对比。基于碰撞结果,对电池包应力和电池包位移进行分析,评价不同材料的的强度和刚度,得出最优轻量化材料及拓扑优化的效果。

1.1.2 研究意义

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图