基于温差发电的汽车尾气能量回收装置设计与优化毕业论文
2021-11-06 20:11:07
摘 要
近年来,汽车数量越来越多,化石能源逐渐枯竭,温室效应越来越严重。节能已成为人们重点关注的地方。在购车时,节油已是人们首要考虑因素。但是,现有的汽车发动机的能量转换效率却不太理想也难以突破,大量的热能随着汽车尾气排出而浪费掉,还造成了大气污染。与此同时,车用电子设备也越来越丰富,越来越复杂。对电能的需求也越来越高。而车用发电系统却效率低下,难以支持汽车用电,故利用汽车尾气温差发电来回收余热同时支持汽车用电这一绿色技术获得了人们的大力支持。这也是国际上的前沿问题,具有巨大的发展前景。
本文针对汽车尾气热量回收装置进行研究,在现有的温差发电装置下,基于传热学原理与温差发电原理,通过ANSYS平台建立了三维模型,提出了冷端的性能评价指标,为今后冷端优化的研究奠定了基础。
其次,通过计算机仿真的方法,研究了热端包括肋片结构和集热箱体结构在内的不同内部结构尺寸对尾气温差发电器热端传热特性的影响,还对集热箱体尺寸结构进行优化。最终结果显示:当箱体的尺寸为400mm(长),110mm(宽),100mm(高)时,热端温度可达最高。且温度分布情况良好。
最后,对于温差发电装置冷端进行结构设计与优化分析,对于冷端传热结构进行了分析并在此基础上考虑了三种不同的水箱结构,基于各自不同的特点提出了最适合的水箱结构。
对热电发电机结构性能的研究对于推动热电发电机在汽车节能减排技术中的发展、在汽车上的应用以及汽车节能减排技术的发展具有重要意义。
关键词:汽车尾气温差发电装置,仿真优化,冷端设计,流固耦合
Abstract
In recent years, the number of cars is increasing, fossil energy is gradually exhausted, and the greenhouse effect is becoming more and more serious. Energy saving has become the focus of attention. When buying a car, saving fuel is the first consideration. However, the energy conversion efficiency of the existing automobile engine is not ideal, and it is difficult to break through. A large amount of heat energy is wasted along with the exhaust of automobile, which also causes air pollution. At the same time, vehicle electronic equipment is becoming more and more rich and complex. The demand for electric energy is also increasing. However, the vehicle power generation system is inefficient, and it is difficult to support the automobile power consumption. Therefore, the green technology of using automobile exhaust gas temperature difference to generate electricity to recover the waste heat and support the automobile power consumption has been greatly supported by people. This is also a frontier issue in the world and has great development prospects.
This paper studies the heat recovery device of automobile exhaust gas. Under the existing thermoelectric power generation device, based on the principle of heat transfer and thermoelectric power generation, a three-dimensional model is established through ANSYS platform, and the performance evaluation index of cold end is proposed, which lays a foundation for the research of cold end optimization in the future.
Secondly, through the computer simulation method, the influence of different internal structure dimensions of the hot end including fin structure and collector box structure on the heat transfer characteristics of the exhaust gas thermoelectric generator is studied, and the size and structure of the collector box is optimized. The final results show that when the size of the box is 400mm (length), 110mm (width) and 100mm (height), the temperature at the hot end can reach the highest. And the temperature distribution is good.
Finally, the structure design and optimization analysis of the cold end of the thermoelectric generation device are carried out, and the heat transfer structure of the cold end is analyzed. On this basis, three different water tank structures are considered, and the most suitable water tank structure is proposed based on their different characteristics.
The research on the structure and performance of thermoelectric generator is of great significance to promote the development of thermoelectric generator in automobile energy saving and emission reduction technology, the application in automobile and the development of automobile energy saving and emission reduction technology.
Key Words:Automotive exhaust thermoelectric generator, simulation optimization, cold end design, fluid structure coupling.
目录
摘 要 3
第1章 绪 论 9
1.1汽车发展趋势及研究背景与意义 9
1.1.1汽车发展现状及前景 9
1.1.2研究背景与意义 9
1.2 国内外研究现状 10
1.2.1国外研究现状 10
1.2.2国内研究现状 11
1.3 各模块研究现状 11
1.3.1集热模块 12
1.3.2温差发电模块 13
1.3.3冷却模块 14
1.4 研究内容与研究方法 14
1.5本章小结 15
第2章 温差发电原理与基本结构 16
2.1温差发电原理 16
2.1.1塞贝克原理 16
2.1.2帕尔贴效应 16
2.1.3焦耳效应 16
2.1.4傅里叶原理 17
2.1.5汽车尾气温差发电原理 17
2.2温差发电装置基本结构 17
2.2.1 集热模块 17
2.2.2温差发电模块 18
2.2.3冷却模块 19
第3章 温差发电装置结构优化分析 22
3.1 仿真软件简介 22
3.1.1ANSYS Workbench 仿真软件简介 22
3.1.2仿真分析流程 23
3.2 温差发电装置热端模型的搭建 23
3.2.1热端结构建模 23
3.2.2集热箱体结构优化模型 24
3.3 温差发电装置热端仿真条件设置 24
3.4温差发电装置热端仿真结果分析 25
3.5温差发电装置冷端结构设计 26
3.5.1冷端结构介绍 26
3.5.2冷端传热结构分析 26
3.5.3冷端结构设计与优化 27
3.6本章小结 27
第4章 结论和展望 28
4.1全文总结 28
4.2研究展望 28
参考文献 29
致 谢 30
第1章 绪 论
1.1汽车发展趋势及研究背景与意义
1.1.1汽车发展现状及前景
20世纪以来,我国汽车工业快速发展,人们生活水平也日益提高。据相关统计,我国汽车保有量已达亿3.42辆。我国的汽车数量逐年增加。虽然汽车工业的发展改善了人们的生活,但汽车能耗的增加与我国乃至世界能源危机的进一步加剧之间的矛盾日益尖锐。因此,如何在减少环境污染的同时节约燃料消耗已经成为当今世界的一个热门研究课题。
图 1-1 全国机动车数量变化形势 图 1-2 全国汽车数量变化形势
1.1.2研究背景与意义
随着科技的进步,汽车上的电子设备也越来越多,出现了越来越多的功能,导致汽车用电需求越来越大。同时汽车的发电系统却没有很高的效率与很好的发展。汽车发电系统不仅仅要为汽车上的电子设备提供充足的电力,还有满足汽车上的蓄电池电能。而他的效率往往只能达到百分之五十。如果还要计算发动机自身的能量转换效率,总体的效率值还会更低,而这部分确实可代替不可避免的。以此同时,汽车发动机的效率也不尽人意。大量的热能随着汽车尾气排走。同时也给冷却系统带来压力。不仅损失了大量的能量,还会对环境造成污染。于是,温差发电系统随之而生。这一绿色环保技术不但能够降低汽车发动机的热能损失,还能够为汽车电子设备提供电量,一举多得。