电磁阀执行器的建模与无速度传感器控制外文翻译资料
2022-09-08 12:53:13
英语原文共 17 页,剩余内容已隐藏,支付完成后下载完整资料
电磁阀执行器的建模与无速度传感器控制
摘 要
本文介绍了电磁阀执行机构的建模与控制。该模型是非线性的,它考虑到了二次非线性如磁滞、饱和、反弹和互感。确定模型参数的实验方法已经呈现出来了。滑动模式控制是用来减少活塞气门回位速度的,它减少了由于柱塞高冲击速度撞击核心时引起的动噪声。为了消除对位移和速度传感器的需要,研制了一个非线性观测器,只采用线圈电流测量。位移估计是用来作为期望轨迹的反馈跟踪。控制的目标是最大限度地减少能源消耗和减少气门的速度,这可以提高执行器的疲劳寿命,降低冲击噪声。仿真和实验结果体现在一个我们实验室设计和建造的执行器里。实验结果显示了非常好的协议与分析模型。
关键词:电磁控制器;滑动模态;传感器;可变气门驱动;非线性控制
1简介
电磁执行器(EMA)越来越多的成为工业上选择的执行机构,因为他们坚固耐用,成本低,降低了复杂度,相对的高力密度和易于控制。电磁阀现在主要用于燃油驱动,废气再循环系统,食品饮水机、冰箱,洗衣机等领域。
一种最新应用的电磁阀正是基于EMA实现的 ,它包括电磁阀(EMV)驱动系统(如图1所示),EMV的配置将在该研究得以检验,本研究由共用一个普通柱塞和相对的弹簧的两个电磁铁组成(图1)。这些设备目前正在被开发以用于实施先进的内燃机燃烧策略。EMV的内部部署的主要问题是当通电柱塞撞击核心时燃烧发动机产生的噪音。
这里还有一些其他挑战,但不局限于这些,气门回位速度的控制,改进的能量损耗,轨迹以最小数量的测量和高驱动速度形成。因此,这一最新一代的EMA有必要实现更严格的控制偏差和更深入的模型。此外,整体系统是成本有效的这一点是必要的。这意味着该系统可能要用较少的传感器优化性能。这些要求,再加上强非线性动力学耦合,使经典的基于传感器的控制使用策略成为了一个不太有吸引力的选择。
EMV是最有希望减少燃油消耗和车辆排放的解决方案之一 ,“单缸控制”的思想和无凸轮发动机的概念为可变气门正时(VVT)或全柔性阀驱动。这实际上意味着有直接控制阀的定时和气门升程。这个方法提供了另一种控制的自由度,无论是进气和排气动态,另外它潜在的显著改善了发动机转矩和整体燃油经济性。
柱塞撞击的问题,虽然可能影响结构的完整性以及产生噪声,但是它可以通过减少柱塞阀座速度的办法来解决(柱塞速度只是在影响核心或每个电磁铁的定位)。气门回位速度减少部分由机械构造设计来完成,它完全由电子控制。此外,非线性模型EMV将被开发和验证。这种模式将包括次要非线性如饱和,滞后,弹跳和互感应。由于力表现出这些特性,这些非线性因素对电磁力建模的合理程度是很重要。
一个EMV的控制需要调制一些可测机械变量,如速度或位移。某些机械变量可能由于操作或环境条件而无法准确测量。从一个成本的角度来看,它也有利于使用尽可能最少的传感器。因此,有必要利用其他信号,通常是一个可变电信号,从中可以推断一些关于某些机械变量的信息。这被称为无传感器估计。本文的首要目标是为一类EMV执行器建模和无传感器控制气门回位速度。这个控制解决方案是一种非线性模型为基础的方法,它相对于干扰和模型不确定性是不变的。
到目前为止,大量关于EMV的工作已进行了,一些值得注意的研究工作是在这里提出的。勒凯纳提出了一个EMV的配置,其中磁性力是由永久磁铁和一对线圈提供。因为这代表了核心损失将涡流建模考虑其中,他们的效果是通过有限元进行了模拟的。虽然其中存在一些不匹配,但是有限元模型通过实验数据进行了验证。王和斯特凡诺普卢得到了一个模型,其中考虑了线性和饱和动力学线圈。仿真数据随后被从一台装有EMV的发动机上获得的实验数据得以验证。传感器分辨率降低了速度的近似数值的精度。曾经有人试图利用一个线性控制器和一个未知的观察结构去解决EMV致动器的软气门的问题。控制算法是基于反馈位置测量的增益计划跟踪控制器的。控制电压高达100 V,霍夫曼和斯特凡诺普卢[ 6 ]利用验证模型[ 3 ]并设计了一个阀门位置跟踪控制器,它包括前馈和反馈控制器。位置和速度从位置测量数据估计而来。基于反馈控制器的设计关于状态反馈法及其应用控制测量。泰[ 2 ]提出了一个基于线性磁力的模型。模型包括气门间隙。H1法设计基于位置的跟踪控制器。气门回位速度被减少到一个可以接受的值。
布兹曼等人[ 4 ]试图利用基于电流测量的控制算法的无人观测传感器。这个无速度传感器控制策略基于观测通过线圈的电流线圈及其导数的比,然后将其与预定义值进行比较。根据误差,将线圈电流适当增加或减少。该算法被修改后,以适应基于最终性能的每一次的能量输入。算法在燃烧发动机上进行了测试,最终速度以0.3 - 0.2米/秒进行报告。然而,没有比较数据提出了基于估计的有效准确估计位置和速度信号。
在这项研究中提出的工作旨在包括一个全面的模型,包括非线性效应,如弹性互感和滞后。因此,这项研究是一个合乎逻辑的进展,然后用该模型进行优化设计,降低能耗的EMV到42 V的准备。一组设计规则随后被开发以帮助低能量系统的设计。此外,一个基于观测器的传感器的控制策略是用来解决气门回位速度问题。最后,实验结果验证与EMV优化以降低功耗。
2. EMV的建模
EMV的设计和建造,如图1。它包括两个相对的电磁铁与预压缩弹簧的两端,中间的电磁柱塞。移动的质量由柱塞、柱塞轴、弹簧和弹簧固定器组成,如图1所示。
2.1 力学模型
力学模型的推导很好的记录在[ 14 ]。图2中的自由体使用了机械动力学的推导过程,Fmu和Fmd是由于上部和下部电磁铁产生的力,Ff是由于干摩擦的产生的力,Fsu和Fsd是上、下的弹簧产生的弹簧力,Fbu和Fbd是阻尼上下弹簧的力。描述柱塞运动的微分方程为:
(1)
ks是弹簧常数,Fmd和Fmu是电磁铁下部和上部的电磁力,B是上下弹簧的集总阻尼系数,Z是集总的位移质量,Mt
此外,空气间隙被定义为
由于严格的非线性(核心面)的力建模作为
Fh是由于严格的非线性而产生的力,K为电磁铁的刚度,是其阻尼系数,W是柱塞的宽度,Xs是弹簧的长度预压缩,x是空气间隙,Xu是上电磁铁Xd是下电磁铁,下标u和d分别代表上下电磁铁。干扰的产生是由于发动机的力量这个推导被忽视而产生。
2.2 电气模型
描述电气子系统动力微分方程
其中磁通匝数,Vs为电源电压,R是线圈电阻和VL是电感两端的电压。描述当前关系的示意图在图3中,当前函数被定义为(5)
非线性函数f和f1是能量恢复项和耗散项。ir代表在储存能量耦合场中电流的分数,id是失去了滞后,并作为热耗散的电流小部分。一个改良的在[ 15 ]中使用的函数将在这里使用。这个耗散电流可以表示为
参数D11、D12、D22、D21和XV是实验确定。
2.3磁模型
由电磁铁产生的磁力是流量和空气间隙的函数。由于近距离(约8毫米)电磁铁的相互诱导磁通产生一种力应考虑在内。电磁铁的力
在(8)和(9)的右边的二次是由于相互感应的力。这个占了一些损失,不利于任何有用的机械运动的柱塞。因此,输出Yt EMV状态的动态方程
3.实验校准装置
测试平台MTS(单轴测试系统),该系统的数据采集系统,如图4所示。
3.1实验程序
1设备和电磁铁连接如图4所示。
2该钢靶或柱塞设置在一定的距离或电磁铁表面的空气间隙。
3在软件中一步电压被施加到线圈产生一个命令。
4测量电压,电流和力,获得数据。
5步骤2-4在不同的空气间隙中重复。
4实验验证
4.1磁子系统
4.1.1磁链
磁链的计算公式(4)对电磁铁不同的空气间隙和不同的电压绘制了磁化曲线,并对实验数据进行验证,如图所示5和6,实验和模拟图显示,在不同的电压和空气间隙的密切配合,显示出饱和和滞后已充分模拟各种操作点的电磁铁(图5和6)。
4.1.2力
磁力是仿照(11)式所示。M2和M1的参数依赖于空气间隙,所以他们被绘制在空气间隙和最佳配合得到的多项式形式。
回归系数后来用在模拟和实验数据,如图7所示的理论力进行了验证
4.2电气子系统
4.2.1电流
在最小二乘意义上,每一个空气间隙的恢复电流通过拟合的平均磁化曲线的已产生的滞后曲线。使用一个多项式的形式,得到一个很好的配合。
其中,g4、g3、g2与g1系数依赖于空气间隙。(13)的系数的影响可以表示通过绘制它们对空气间隙和他们在最小二乘意义上的拟合曲线表示出来。(14)给出了最佳配合
恢复功能可以通过式(13)获得。每个气隙的耗散函数(6)是通过估计的耗散函数F1(VL)和时间常数估计而来,使用恢复功能已经确定,id通过公式(5)利用实验数据计算可得。这是反复使用直接搜索优化技术,直到得到一个很好的配合。因此,方程(7)的参数被确定,这些参数值随后用在模拟。在图8和9中显示了不同的空气间隙和电压的数值和实验数据的电压和电流的数据点。实验数据和模型的广泛的操作点之间有一个密切的协议。小电压的轻微的差异源自于这样一个事实:很难捕获瞬态电感的电压。多项式的顺序选择是根据一个多项式,将给最适合于不同的数据样本,代表不同的操作条件的致动器。
4.3机械子系统
式(1)中,可以从机械动力学上确定的参数包括MT,B,和C,这些参数被确定后,使用方法概述在[ 16 ]中。所获得的参数被用于在一个模拟模型的机械子系统的初始条件下输入。结果与3个系统(图十)的实验数据绘制。
4.4EMV系统
验证了每个子系统后,整个装置将被组装,两个线圈利用一个开环电压通电。从模拟的模型中得到的数据被绘制在如图所示11a和11b。有实验数据和模拟数据之间的良好耦合,除了在反弹过程中的线圈电流和速度。同时,模型的逼真度是依赖于柱塞平衡位置的气隙的精确估计,没有通电的电磁铁。因此,这直接影响的估计力和状态估计的准确性。平衡位置不为零,由于电磁铁的剩磁,但该模型假定柱塞平衡位置为零。平衡位置被观察到从-0.3毫米到0.3毫米的任何地方,这个值是至关重要的,因为0.1毫米的误差,可能会导致估计力相差高达200,在同类的差距中,这将影响力,流量和速度的验证是否正确。
5 EMV传感器观测器设计
假设只有当前的测量可用,它的目的是估计柱塞的位置和速度。因此,一个观察器将被设计用于在有限时间内将驱动的位置和速度的估计误差减小为0,在该点的状态估计将等于其实际值。
滑动模式的方法在这里运用,由于它对不确定的鲁棒性和易于实现 [ 9,14 ]。系统的观测器结构(10)为如下:
滑动歧管被定义为
对于足够大的收益,Mi=(i=1,hellip;,6) 滑模在滑动表面上执行,S1和S2,观察器达到收敛,动态误差变得逐渐稳定。
6 滑模控制理论
由滑模控制设计过程两个步骤。第一步是一个不连续的选择表面(有时称为开关表面或平衡流形) sigma;(lambda;)=0,在状态空间控制经历了不连续。这个表面在某种意义上这样系统的行为具有决定性, (即所需的特征值)。
在第二步中,持续的控制函数(对于sigma;gt;0)和(对于sigma;gt;0)被选择以满足滑动模式的存在条件
考虑到非线性系统在(17)
F(lambda;)一个可能的非线性函数,其参数是已知的,其上界f已知,并且是正的。控制u,h(gamma;,t)是一个带有上界Ho的未知干扰,B是矢量控制,这是不知道的,但它的标志是已知的,它是由它的上限为界,gamma;的输出是连续可微的,需要跟踪时变参考轨迹,gamma; d(t),其高阶导数存在。
跟踪误差
而gamma; d初始条件是这样的:
因此,跟踪可以实现使用一个有限的控制,为了实现渐近跟踪gamma; (t)equiv;gamma; d(t),一个平衡流型sigma;=0,它在[8]中被定义为
图11b.位置和速度的实验验证
在滑动模态下,运动方程与流形相吻合
运动方程(21)的解决方案是降低它的次序(在这种情况下,是一阶微分方程)
在滑动模式下的运动是渐渐稳定的,而且其轨迹误差将在时间t1达到平衡流形,并将在t>t1后局限于次流形。因此将成为一个不变集。
正标量b被用来确定所需流形上的运动轨迹的收敛速度。如果满足匹配条件,在该滑动模态下的运动与几种干扰项h(c,t)是无关的,这就意味着h(c,t)应属于B(c)的范围。因此,控制量u被设计为一个不连续的控制项。
乘以(19)由其衍生物得到
使得
因此,存在满足匹配条件的情况,经管参数有不确定性,但是还是强制执行滑动模式。所以鲁棒性保证平衡流形。
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[146308],资料为PDF文档或Word文档,PDF文档可免费转换为Word