含油污泥热解燃烧特性及动力学机理研究毕业论文
2022-01-09 19:12:32
论文总字数:38451字
摘 要
石油作为当今世界的主要能源之一,年生产量巨大,而在开发过程中容易产生污染,含油污泥便是其中产生量及危害较大的污染物。作为一种有机废物,若随意排放,会对环境形成不可逆转的破坏和污染。传统的处置技术,如生化法、填埋法、堆肥法等,在处置含油污泥时存在周期长、占地面积大、对耕地环境产生影响等缺点;而以热解燃烧为代表的热化学转化法,则具有处置速度快、污染物去除彻底、可实现资源回收利用等优点,受到了国内外科研人员的广泛关注。本论文利用热分析手段探究了含油污泥及其原油在不同升温速率下的热解燃烧过程,构建动力学方程,分析热解燃烧机理,以期为含油污泥热化学处置技术的发展提供一定的理论基础。
本论文通过干燥、脱油、燃烧含油污泥,得到含油污泥的含水率、含油率等基础数据,并对污泥中的原油进行粘度测试、四组分分析及元素分析,掌握原油的理化特性。利用氮气气氛和空气气氛,在升温速率分别为5、10、20、40 C·min−1的条件下对含油污泥组分进行热重实验,根据实验数据进行TG-DTG曲线绘制,进行热解燃烧相关性能参数计算。由于污泥燃烧热解是复杂的物理化学过程,而其本质是所含原油参与反应,为了能更精确的理解热解燃烧反应的本质,因此对含油污泥中的原油也进行了单独分析,根据所绘制的TG−DTG曲线及相关实验数据,对原油热解燃烧机理也进行分析。最终含油污泥及其原油燃烧热解实验得出以下结论:
- 含油污泥的热解主要分为三个阶段,而燃烧过程则包含四个阶段。含油污泥热解时的总挥发分综合释放特性指数Dsyn随着升温速率的增大,升温越快,含油污泥的总挥发分综合释放特性指数Dsyn越大,从3.17×10−9 2·C−3·min−2升至1.38×10−7 2·C−3·min−2;对于燃烧过程而言,同一升温速率下,不同阶段的含油污泥的平均失重速率随着升温速率的增大,变化明显,40 C·min−1的升温速率下平均失重速率最高达到1.12 ·min−1;
(2)含油污泥中原油的热解主要分为两个阶段,而燃烧过程则包含三个阶段。原油热解的挥发分综合释放特性指数D及总挥发分综合释放特性指数Dsyn均随着升温速率的增大而提高,40C·min−1升温速率下,该指数升至4.20×10−52·C−3·min−2;原油燃烧情况下,随着升温速率的升高,含油污泥的着火特性及燃尽特性指数均随之提高,总的综合燃烧特性指数S也随之增高,总的综合燃烧特性指数S在5 °C·min-1下为2.90×10−7 %·°C-3·min-2,而当升温速率在40 °C·min-1时综合燃烧特性指数S增加至2.66×10−5 %·°C-3·min-2。
(3)含油污泥及其原油的热解燃烧动力学分析结果表明,油污泥及其原油热解燃烧反应机理不受升温速率影响。含油污泥的动力学分析显示,含油污泥的热解第二阶段表观活化能为135.4、155.2、162.5 和171.9 kJ·mol−1,逐渐增大,而第四阶段的表观活化能为419.8、434.2、454.5和426.1 kJ·mol−1先增大后减小;含油污泥的燃烧第三阶段表观活化能为162.5、168.2、224.4 和253.4 kJ·mol−1,呈增长趋势,其余各阶段的表观活化能均先增大后减小。除升温速率10 °C·min−1的燃烧反应外,随热解燃烧反应推进,各阶段表观活化能逐步增大。含油污泥原油的动力学分析显示,升温速率对热解燃烧反应第一阶段表观活化能均无影响,除升温速率由10 °C·min−1增大到20 °C·min−1外,第二阶段表观活化能与升温速率呈正相关,燃烧反应的第三阶段表观活化能随升温速率的增大而减小,分别为242.8、215.9、207.2和196.4 kJ·mol−1。
关键词:含油污泥 热解 燃烧 动力学 热解油
Abstract
Oil, as one of the main energy sources in the world, has a huge annual production, but it is easy to produce pollution in the process of development. Oily sludge is one of the pollutants that produce a large amount and do great harm. As an organic waste, if it is discharged at will, it will cause irreversible damage and pollution to the environment. Traditional disposal technologies, such as biochemical method, landfill method and compost method, have disadvantages such as long period, large area and impact on cultivated land environment when disposing oily sludge; while thermochemical conversion method, represented by pyrolysis and combustion, has advantages such as fast disposal speed, thorough removal of pollutants and recycling of resources, which are widely concerned by researchers at home and abroad . In this paper, thermal analysis method is used to explore the pyrolysis and combustion process of oily sludge and its crude oil under different heating rates, build dynamic equations, analyze the mechanism of pyrolysis and combustion, in order to provide a theoretical basis for the development of thermochemical treatment technology of oily sludge.
In this paper, through drying, deoiling and burning oily sludge, the basic data of water content and oil content of oily sludge are obtained, and the viscosity test, four component analysis and element analysis of crude oil in sludge are carried out to master the physical and chemical characteristics of crude oil. Using nitrogen atmosphere and air atmosphere, the heating rate is 5,10,20,40 °C·min−1. Under the condition, the thermogravimetry experiment was carried out on the oily sludge and its crude oil components. The TG-DTG curve was drawn according to the experimental data, and the relevant performance parameters of pyrolysis and combustion were calculated. According to the TG-DTG curve drawn and the relevant experimental data, the pyrolysis and combustion mechanism of the oily sludge and crude oil was analyzed, and the following conclusions were drawn:
(1) The pyrolysis of oily sludge is mainly divided into three stages, and the combustion process consists of four stages. With the increase of the heating rate, the faster the temperature rises, the greater the Dsyn from 3.17×10−9 2·C−3·min−2 to 1.38×10−7 2·C−3·min−2. For the combustion process, under the same heating rate, the average weight loss rate of oily sludge in different stages increased with the increase of heating rate, and the maximum average weight loss rate reached 1.12 ·min−1 at the heating rate of 40 C·min−1;
(2) The pyrolysis of crude oil from oily sludge is mainly divided into two stages, while the combustion process consists of three stages. The comprehensive release characteristic index D and the comprehensive release characteristic index Dsyn of crude oil pyrolysis increase with the increase of heating rate. At the heating rate of 40C·min−1, the index rises to 4.20×10−52·C−3·min−2. In the case of crude oil combustion, with the increase of heating rate, the ignition characteristic and burnout characteristic index of oily sludge increase, and the total comprehensive combustion index increases The total comprehensive combustion characteristic index S is 2.90×10−7 %·°C-3·min-2 at 5 °C·min-1, and 2.66×10−5 %·°C-3·min-2 at 40 °C·min-1.
(3) The kinetic analysis of pyrolysis and combustion of oily sludge and crude oil shows that the reaction mechanism of pyrolysis and combustion of oily sludge and crude oil is not affected by the heating rate. The kinetic analysis of oily sludge shows that, in the second stage of pyrolysis, the apparent activation energy of oily sludge is 135.4, 155.2, 162.5 and 171.9 kJ·mol−1, which increases gradually, while in the fourth stage, the apparent activation energy of 419.8, 434.2, 454.5 and 426.1 kJ·mol−1 first increases and then decreases; in the third stage of combustion, the apparent activation energy of oily sludge is 162.5, 168.2, 224.4 and 253.4 kJ·mol−1, which shows an increasing trend, The apparent activation energy of other stages increased first and then decreased. In addition to the combustion reaction with a heating rate of 10 °C·min−1, the apparent activation energy of each stage gradually increases with the advance of pyrolysis combustion reaction. The kinetic analysis of oily sludge crude oil shows that the heating rate has no effect on the apparent activation energy of the first stage of pyrolysis combustion reaction, except that the heating rate increases from 10 °C·min−1 to 20 °C·min−1,the apparent activation energy of the second stage is positively correlated with the heating rate, and the apparent activation energy of the third stage of combustion reaction decreases with the increase of heating rate, which is 242.8, 215.9, 207.2 and 196.4 kJ·mol−1.
Keywords: Oily sludge;Pyrolysis;Burning;Dynamics;Pyrolysis oil
目 录
摘 要 I
Abstract III
第一章 绪论 1
1.1 概述 1
1.1.1 含油污泥来源 1
1.1.2 含油污泥特性 1
1.2 含油污泥处理现状 2
1.2.1 焚烧处理技术 2
1.2.2 热解处理技术 2
1.2.3 生物处理技术 2
1.2.4 固化处理技术 2
1.2.5 溶剂萃取法 3
1.3 目前含油污泥热处置研究进展 3
1.3.1 燃烧处置技术 3
1.3.2 热解处置技术 4
1.4 本文研究工作 5
第二章 实验原料分析及理论基础 6
2.1 实验原料分析 6
2.1.1 含油污泥中原油含量标定 6
2.1.2 原油理化性质分析 7
2.2 热分析仪器及实验方法 8
2.2.1 热重分析仪 8
2.2.2 热分析原理 8
2.2.3 实验方法 9
2.3 含油污泥热解动力学理论及公式 9
2.3.1 动力学基本原理 9
2.3.2 动力学参数求解方法 10
2.4 本章小结 12
第三章 含油污泥热解燃烧特性及动力学分析 14
3.1 含油污泥热解特性分析 14
3.1.1 TG−DTG曲线分析 14
3.1.2 含油污泥热解特性分析 15
3.1.3 含油污泥热解动力学分析 18
3.2 含油污泥燃烧特性分析 19
请支付后下载全文,论文总字数:38451字